Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X

Naukowy styl życia

Nauka i biznes

Strona główna Informacje
Dodatkowy u góryTESTO

Nanotechnologiczna konstrukcja leków

"Konstrukcja kompozytowych nanomaterałów, tworzonych za pomocą metody nakładania »warstwa po warstwie« (ang. Layer-by-layer, LBL), daje bezprecedensową szansę nanotechnologom i inżynierom materiałowym kontroli nad składem chemicznym, grubością oraz sposobem i czasem rozpadu poszczególnych warstw nanokompozytu" - wyjaśnia profesor David M. Lynn.

Nanotechnologia umożliwiła opracowanie zupełnie nowych materiałów, w pełni biodegradowalnych, których wielowarstwowy, "kanapkowy" układ, umożliwia opracowanie nowych form terapii (w tym terapii genowej).

Lek lub fragment DNA, zamknięty pomiędzy jedną z polimerowych warstw, byłby, w kontrolowany i wcześniej określony sposób, samoczynnie uwalniany do organizmu dzięki obecności odpowiednich czynników fizjologicznych (pH środowiska oraz podwyższona temperatura).

Zmiana właściwości fizykochemicznych środowiska otaczającego wielowarstwowy nanokompozyt powoduje rozluźnienie oddziaływań pomiędzy poszczególnymi warstwami.

Umożliwia to powolny rozpad kompozytu oraz uwolnienie cząsteczek chemicznych związanych w wewnętrznej strukturze nanomateriału. Profesor David M. Lynn z University of Wisconsin (USA), korzystając z techniki LBL, opracował nowy nanomateriał składający się z powtarzających polimerowych (poliaminy) biodegradalnych warstw, pomiędzy którymi związane zostały między innymi fragmenty plazmidowego DNA.

Jak zauważa prof. Lynn, struktura nanokompozytu zabezpiecza DNA przed niekorzystnymi warunkami zewnętrznymi oraz umożliwia uwolnienie w warunkach symulujących fizjologiczne takie warunki, jakie panują wewnątrz ludzkiego ciała.

"Nanokompozyt o grubości 100 nanometrów samoczynnie, pod wpływem odpowiedniego pH i temperatury, rozpada się, uwalniając do otoczenia zamknięte w przestrzeniach makrocząsteczki, np. fragmenty DNA" - opisuje prof. Lynn.

Gdy naukowcy zastosowali w badaniach fragment DNA, który kodował syntezę fluorescencyjnego białka, po około 30 godzinach inkubacji żywych komórek na nanokompozycie, w obiektywie mikroskopu fluorescencyjnego zaobserwowali wyraźne świecenie wewnątrz komórek.

Fakt ten wskazuje, że uwolnione z nanokompozytu DNA w niezmienionej formie dotarło do aparatu replikacyjnego żywej komórki i nastąpiła ekspresja - odczytanie genów zawartych w kwasie dezoksyrybonukleinowym.

"Nasze badania wskazują na możliwość wykorzystania nanokompozytów syntetyzowanych techniką LBL w nowoczesnej medycynie, w tym w przyszłej terapii genowej, poprzez kontrolowane uwalnianie np. leków lub genów" konkluduje profesor Lynn.

PAP
Skomentuj na forum


Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje




NCBR: 5,5 mld na nowatorskie projekty
19-01-2017

NCBR: 5,5 mld na nowatorskie projekty

Ponad 5 mld zł na nowatorskie projekty w 2016 roku rozdysponowało Narodowe Centrum Badań i Rozwoju (NCBR), kolejne 5,5 mld złotych zostanie przyznanych w 2017 roku.

Liczba kobiet w nauce rośnie bardzo wolno
19-01-2017

Liczba kobiet w nauce rośnie bardzo wolno

Statystyki pokazują ogromne dysproporcje w obecności obu płci w naukach ścisłych. Kobiety zajmują zaledwie ok. 10 proc. najwyższych stanowisk akademickich.

Rola neuronów wstawkowych
19-01-2017

Rola neuronów wstawkowych

Poznanie oddziaływań poszczególnych neuronów ze sobą nawzajem i z ośrodkowym układem nerwowym jest niezwykle istotne.

Papryczka chili przedłuża życie
19-01-2017

Papryczka chili przedłuża życie

Regularne spożywanie czerwonej papryczki chili może przedłużyć życie – wynika z badań opublikowanych przez „PLOS ONE”.

znajdz nas na fcb
Informacje dnia: Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej

Partnerzy

GoldenLine Fundacja Kobiety Nauki Warszawskie Stowarzyszenie Biotechnologiczne (WSB) „Symbioza” Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 QDAY Mlodym Okiem Nanotechnologia Lodz Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab