W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku
Wskazał w rozmowie z PAP prof. Wiesław Jędrzejczak.
Laboratoria.net
|
Zamknij X
|
Urządzenie „tłumaczące” informację kwantową pomiędzy fotonami mikrofalowymi oraz optycznymi powstało w Centrum Optycznych Technologii Kwantowych QOT. Nowa technika może zostać zastosowana jako element infrastruktury kwantowego internetu oraz w mikrofalowej radioastronomii – poinformował Wydział Fizyki Uniwersytetu Warszawskiego.
Wyniki badań dotyczących urządzenia zostały opublikowane na łamach czasopisma „Nature Photonics". Publikacja była efektem pracy w zespole Laboratorium Urządzeń Kwantowo-Optycznych w Centrum Optycznych Technologii Kwantowych QOT przy udziale doktoranta Sebastiana Borówki, magistrantki Uliany Pylypenko, dr. Mateusza Mazelanika oraz kierownika laboratorium, dr. hab. Michała Parniaka.
„W czasie odtwarzania muzyki z urządzenia elektronicznego dochodzi do konwersji informacji – plik muzyczny zapisany cyfrowo w pamięci urządzenia konwertowany jest na prąd elektryczny, kierowany następnie do głośników. W podobny sposób można konwertować informację kwantową zawartą w fotonach – najmniejszych, niepodzielnych cząstkach światła – na przykład przekazać informację z fotonu mikrofalowego do fotonu optycznego” - wyjaśnił w komunikacie dr hab. Michał Parniak.
Zaznaczył jednak, że operacje na pojedynczych fotonach nastręczają wielu trudności. Urządzenia wykonujące takie operacje muszą być bardzo precyzyjne i nie mogą wnosić do konwertowanej informacji szumu ani zakłóceń. Dodatkowo fotony optyczne mają dziesięć tysięcy razy większą energię niż fotony mikrofalowe i istnieje niewiele ośrodków, które mogą równocześnie oddziaływać z jednymi i drugimi.
Konwersja informacji kwantowej jest kluczowa dla działania sieci połączeń między różnymi urządzeniami kwantowymi, takimi jak komputery kwantowe wykonujące obliczenia przy pomocy fotonów mikrofalowych oddziałujących z obwodami nadprzewodzącymi.
„Przesył informacji kwantowej na duże odległości przy pomocy tych fotonów jest utrudniony ze względu na zakłócenia. Sprawy mają się jednak dużo lepiej w przypadku fotonów optycznych, mogących bez problemów przenosić informację kwantową w światłowodach. Mikrofalowo-optyczny konwerter kwantowej informacji może więc w przyszłości stać się kluczową częścią kwantowej karty sieciowej – interfejsu pomiędzy kwantowymi komputerami a kwantowym internetem” – ocenia dr hab. Parniak.
Naukowcy wiedzą, że z fotonami mikrofalowymi oraz optycznymi mogą oddziaływać atomy rydbergowskie, które można otrzymać przez laserowe wzbudzenie elektronu walencyjnego np. w atomie rubidu. Dzięki temu atom zwiększa swój rozmiar tysiąckrotnie oraz nabywa interesujących własności, które są przedmiotem badań wielu grup badawczych na całym świecie. W tym przypadku najistotniejsze jest to, że atomy rydbergowskie są bardzo czułe na promieniowanie mikrofalowe.
Do tej pory konwersja mikrofalowo-optyczna w atomach rydbergowskich została zaprezentowana wyłącznie dla laserowo schłodzonych atomów w skomplikowanym układzie pułapki magnetooptycznej. Naukowcy z UW jako pierwsi pokazali, że konwersja mikrofalowo-optyczna może zajść również w temperaturze pokojowej, dla swobodnego gazu atomowego zamkniętego w szklanej komórce.
„Dzięki temu znacząco uproszczono konstrukcję układu, co może doprowadzić do miniaturyzacji urządzenia. Dodatkowo zaproponowano nowy schemat konwersji, charakteryzujący się wyjątkowo niskimi zakłóceniami, który pozwala na operacje na pojedynczych fotonach. Uzyskanie znacząco lepszych parametrów niż do tej pory, przy użyciu tak prostego układu, było dużym zaskoczeniem dla badaczy. Wynalazek z UW może też działać non-stop, gdyż nie wymaga specjalnego czasu na przygotowanie atomów, co w innych podejściach pochłania nawet ponad 99 proc. czasu pracy urządzenia” – podano w komunikacie.
Urządzenie wykryło mikrofalowe promieniowanie termiczne w temperaturze pokojowej bez użycia anten mikrofalowych oraz specjalnych niskoszumnych wzmacniaczy. Naukowcy podkreślają, że do zejścia na poziom termiczny wymagana jest czułość na pojedyncze fotony, ale konwerter może działać też dla mikrofal nawet milion razy silniejszych i nie uszkodzą go nawet bardzo silne pola.
Jak wyjaśnili członkowie zespołu, który skonstruował urządzenie, technologie kwantowe, wykorzystują różne nośniki informacji. Komputery kwantowe oparte na złączach nadprzewodzących przechowują kwantową informację w częstościach mikrofalowych, natomiast pamięci kwantowe wykorzystują do tego fotony optyczne. Podobnie jak w przypadku kwantowej karty sieciowej, połączenie obu typów urządzeń wymaga interfejsu, który mógłby sprawnie oddziaływać zarówno w dziedzinie mikrofalowej jak i optycznej – atomy rydbergowskie są tu jednym z proponowanych rozwiązań.
Operacje na pojedynczych fotonach mikrofalowych mogą być również istotne dla pomiarów astronomicznych, badających własności dalekich obiektów lub obserwujących wczesny Wszechświat np. przy pomocy mikrofalowego promieniowania tła. Do tej pory pomiary zachowujące informację kwantową przenoszoną przez mikrofalowe fotony nie były możliwe. Konwersja mikrofalowo-optyczna potencjalnie stwarza miejsce na nową gałąź mikrofalowej radioastronomii.
Zdaniem badaczy, codzienna komunikacja także może wykorzystać odkrycia związane z detekcją mikrofal. Technologie mobilne nowych generacji do przesyłu wykorzystują pasma mikrofalowe o coraz wyższej częstości, coraz trudniejsze do wytwarzania i wykrywania w obwodach elektronicznych. Może okazać się, że w pewnym momencie atomowe sensory mikrofalowe staną się kluczowym elementem tych technologii, pozwalając na przykład skrócić znany graczom „ping” do absolutnego minimum.
Obecnie w Centrum Optycznych Technologii Kwantowych QOT, jak również w innych ośrodkach naukowych na świecie, trwają badania nad wykorzystaniem kwantowych technologii w superczułej detekcji promieniowania mikrofalowego.
Wskazał w rozmowie z PAP prof. Wiesław Jędrzejczak.
Wynika z nowych analiz opublikowanych w PLOS ONE.
Podkreślali uczestniczący w konferencji poświęconej tej tematyce.
Utworzy ośrodek badań nad zastosowaniem nienaturalnych aminokwasów.
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.
Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).
Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.
Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:
dopasować treści stron i ich tematykę, w tym tematykę ukazujących się tam materiałów do Twoich zainteresowań,
dokonywać pomiarów, które pozwalają nam udoskonalać nasze usługi i sprawić, że będą maksymalnie odpowiadać Twoim potrzebom,
pokazywać Ci reklamy dopasowane do Twoich potrzeb i zainteresowań.
Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.
Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.
Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.
Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
Więcej w naszej POLITYCE PRYWATNOŚCI
Recenzje