Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Labro glowna
Strona główna Artykuły
Dodatkowy u góry
Labro na dole

Urządzenia jonizacyjne, czyli komory jonizujące i ich nieświadome użytkowanie


Streszczenie

Urządzenia jonizujące są bardzo popularne w użytkowaniu jednak mało kto zdaje sobie sprawę z ich obecności, a już na pewno ich budowa i działanie są odległym tematem. Często świat badaczy korzysta z komór jonizacyjnych, które są podstawą urządzeń jonizacyjnych, jednak nawet tu nie spotyka się często osób znających ich pospolite wykorzystanie. Artykuł ten przybliża budowę i działanie komór jonizacyjnych i jednej z najprostszych jej typów: komory jonizacyjnej płaskiej. Oprócz tego czytelnik znajdzie tu prawa dotyczące działaniu komór jonizacyjnych, jak i zależności pomiędzy nimi. Poniżej zostały omówione również zastosowania publiczne (czujki gazów), przemysłowe (eliminatory ładunków elektrostatycznych) oraz badawczych (chromatograf).

Słowa kluczowe: komora jonizacyjna, płaska komora jonizacyjna, czujki dymu, chromatograf, eliminatory ładunków elektrostatycznych

Wprowadzenie

Od lat 50tych do chwili obecnej technika jądrowa bardzo szybko się rozwinęła. W dzisiejszych czasach racjonalne wykorzystanie właściwości promieniowania jonizującego jest obecne we wszystkich dziedzinach naszego życia.

Urządzenia jonizujące są powszechnie eksploatowane. Szczególnie często wykorzystywane są urządzenia oparte na oddziaływaniach promieniowania jonizującego z gazami.

Komora jonizacyjna – teoria [ 1,  2,  3]

Głównym elementem budowy wszystkich urządzeń jonizujących jest komora jonizacyjna. Urządzenie to służy do pomiaru jonizacji gazu wywołanej różnego rodzaju promieniowaniem np. promieniowanie jądrowe, rentgenowskie i inne.

    W gazie wypełniającym komorę w wyniku promieniowania powstają jony oraz uwolnione elektrony (powstaje prąd elektryczny). Pomiar prądu jest możliwy poprzez pomiar prądu jonizacyjnego (komora prądowa) lub zliczania oddzielnych impulsów (komora impulsowa). Jonizacji może ulegać także ciecz (np. ciekły argon) lub ciało stałe (półprzewodnik). Co pozwala na uzyskanie większych sygnałów na elektrodach przy tym samym źródle promieniowania. Jonizacja gazu zachodzi w wyniku następujących procesów:

  •     zderzeniem cząstki o wysokiej energii z protonem, elektronem lub cząstką α
  •     wzajemnych zderzeniach cząstek o wysokiej energii (jonizacji wzajemna)
  •     przez wybicie elektronu z powłoki atomu
  •     po wychwycie elektronu przez atom


 
Rys. 1 Schemat budowy komory jonizacyjnej

Liczbę jonów powstałych w komorze jonizacyjnej można wyrazić poprzez stosunek szerokości połówkowej piku energii sygnału, w której energie cząstek są w odpowiednim zakresie przez energię jednej jonizacji wyrażonych:



Całkowita zmiana natężenia sygnału jest opisana poprzez wzór:



gdzie:



C – pojemność kondensatora


Komora jonizacyjna pozwala:

  •     określić straty energii jonizacyjnej cząstki, np. dla cząstki α straty energii są   dla energii cząstki jonizacyjnej
  • rejestrować moment przejścia cząstki przez komorę
  •     rejestrować średnie natężenie prądu jonizacji spowodowanego przez strumień cząstek
  •     zaobserwować impulsy pochodzące od poszczególnych cząstek.

Dla impulsów spowodowanych przez poszczególne cząstki urządzeniem rejestrującym jest kondensator przyłożony do okładki komory jonizacyjnej. Gdy cząstka przejdzie przez okładki kondensatora, spowoduje  przepływ prądu elektrycznego, który jest wzmocniony i zarejestrowany. Elektrony ze względu na bardzo małą masę są o wiele szybsze niż dodatnie jony, czyli nasz impuls będzie składał się z dwóch części:

  •     szybko narastającej, która jest związana z przejściem elektronów
  •     powoli narastającej, która odpowiada za przejście kationów.

W komorze jonizacyjnej energia tracona przez cząstkę jest wprost prostopadła do liczby zjonizowanych jonów. Jeżeli wszystkie zbierzemy na elektrodach, to wtedy w ostatecznych rozrachunkach otrzymujemy impuls o energii wprost proporcjonalnej do jego wysokości. Nachylenie części podstawowej wykresu jest wprost proporcjonalne do liczby pierwotnych jonów. Wykres zróżniczkowany jest wprost proporcjonalny do energii cząstek w komorze.

Generacja sygnału w komorze jonizacyjnej [2, 3]

    Detektor odbiera impuls prądowy indukowany w zewnętrznym obwodzie elektrody zbiorczej.  Przebieg czasowy takiego impulsu opisuje twierdzenie  Ramo-Shockley’a [ ]:



gdzie:

k-tą  - składową globalnego ładunku wytworzonego w akcie detekcji
 w_k (t) -  prędkość chwilową dryfu k-tej składowej  ładunku
 φ_k (r) -  natężenie  pola  elektrycznego  w punkcie r wytworzonego przez jednostkowe  napięcie  polaryzacji detektor w warunkach usunięcia  ładunku  Q  z  objętości czynnej detektora.
r  - jest chwilowym położeniem dryfującego ładunku, tj. r = r(t) określonym równaniem kinematycznym jego ruchu.
Wzór (4) ma charakter ogólny, a wykorzystuje się go, gdy funkcja w_k (t) jest znana. Funkcję tą należy wyznaczyć oraz sprowadzić funkcję  φ_k (r) do postaci „odwikłanej” względem czasu - φ_k (t). Zależności te wyznaczane są dla konkretnych typów i konfiguracji detektorów. [4]

Płaska komora jonizacyjna [2, 4]

Najbardziej popularną i najprostszą w budowie jest komora jonizacyjna tzw. „komora płaska”. Zbudowana ona jest z elektrod zbiorczych ułożonych względem siebie równolegle w znanej odległości  D. Elektrody te są zamknięte w szczelnym pudełku wypełnionym znanym gazem o odpowiednim ciśnieniu (Rys. 2).  
    W wyniku działania promieniowania powstaje N elektronów  i  N jonów dodatnich, które przemieszczają się w kierunku odpowiednich elektrod zbiorczych z prędkościami dryfu  odpowiednio w_el i w_jon, które w dużej mierze zależne są od natężenia pola elektrycznego  E  i jak właściwości gazu otaczającego układ. Zależności te opisane są wzorem:



gdzie:

μ_k - ruchliwość k-tego rodzaj nośnika ładunku (jonu lub elektronu)
n - wykładnik potęgowy;  stanowi współczynnik empiryczny zależny od stosunku E/p (dla niewielkich wartości tego stosunku  współczynnik n jest równy jedności)
∓ -  znak dodatni dotyczy składowej jonowej; znak ujemny - składowej elektronowej
 E - natężenie pola elektrycznego  w całym czynnym obszarze komory, równe:



    Kierunek wektorów prędkości dryfu nośników ładunku jest zgodny z kierunkiem wektora pola elektrycznego.  Iloczyn  skalarny obu wymienionych wcześniej wektorów stanowi iloczyn ich modułu. Dlatego też można wyprowadzić równanie:



Czas zbierania nośników ε_k ładunku wyznacza się za pomocą kinematycznych parametrów ruchu nośników: prędkości dryfu w_k i odległości dzielącej punkt generacji nośników ładunku  r_0 od elektrod zbiorczych. Wartość czasów zbierania nośników ładunku jest różna w zależności od powstałego ładunku:

a/ dla elektronów,


    b/ dla jonów dodatnich   


Równanie (8) i (9) pozwalają wyznaczyć równania szczegółowe opisujące przebiegi czasowe obu składowych indukowanego impulsu prądowego komory:

    a/dla elektronów



   b/ dla jonów dodatnich

 

W obliczeniach tych ważna jest również znajomość wartości ruchliwości μ_el i μ_jon. Ruchliwość  jonów jest zależna od rodzaju jonu, jego masy i temperatury ośrodka w którym się znajduje. Najczęściej przyjmuje się μ_jon = 10-3[cm-3 mmHg/V µs].  Ruchliwość elektronów jest znacznie większa (ok. trzy rzędy wielkości) µel. 5

    Proporcja czasów  zbierania nośników ładunku zależna jest nie tylko od ruchliwości ale również zależy od początkowego położenia  r_0 wytworzonych nośników ładunku w komorze jonizacyjnej. Indukowany impuls prądowy przybiera kształt schodkowy o rozciągłości poszczególnych „stopni” zależnych od początkowego położenia nośników ładunku. Produkcja nośników ładunku zachodzi wzdłuż trajektorii cząstki jonizującej dając zbiór przesuniętych w czasie składowych impulsu o kształcie typu  „tail pulse”  o stromym czole i łagodnym zaniku (efekt ogonowania).

    Reasumując wyznaczenie funkcji k(t) jest możliwe na podstawie bilansu energii dostarczanej (Wzas)  przez źródło zewnętrzne  i  rozpraszanej  (Wdys) w procesie transportu nośników ładunku:


gdzie:

Qk - oznacza ładunek elektryczny zawarty w pojemności własnej komory  
Ck – pojemność własna komory zawierająca ładunek Qk
Vs - napięciem  polaryzacji  
 

W_dys - praca niezbędną do przemieszczenia ładunku Nq  na elementarnej drodze ∂r .  Strona prawa

  
W_zas - energia pobierana  ze źródła, równa  infinitezymalnej zmianie energii elektrycznej kondensatora   Ck
Równanie (12) najczęściej podawane jest jako bilans mocy :
                 
gdzie:



    Całkowity ładunek impulsu prądowego jest wprost proporcjonalny  do energii zdeponowaną w komorze podczas detekcji promieniowania stąd też jest nośnikiem informacji w spektrometrii jądrowej.


Rys.2 Schemat budowy komory jonizacyjnej płaskiej [4]



Czujniki dymu, domowe urządzenie jonizujące

Czujki dymu posiadają w swojej budowie izotopy, które są emiterami promieniowania alfa. W  momencie, gdy do czujki dostanie się gaz (ciężkie cząsteczki dymu), zmniejszy się natężenie prądu jonizacyjnego w komorze jonizacyjnej. Gdy w komorze jonizacyjnej jest czyste powietrze ono także ulega jonizacji, wyznaczając tym samym bazowe natężenie prądu przepływającego przez komorę. Ciężkie cząsteczki dymu powodują kondensację jonów obu znaków (kationy i aniony), zjawisko to zmniejsza liczbę nośników ładunków. Dodatkowo cząsteczki dymu są akceptorami elektronów, co wywołuje zwiększenie ilości anionów. Ponad to cząsteczki dymu są na tyle duże, że zmniejsza się ich ruchliwość. Stan ten powoduje zmniejszenie natężenia prądu jonowego oraz  gęstości objętościowej ładunku. Napięcie na elektrodach komory pozostaje bez zmian.

Czujki dymu zbudowane są z dwóch komór jonizacyjnych: otwartej i zamkniętej. Przez otwartą komorę jonizacyjną przepływa powietrze i to do niej wpadają cząsteczki dymu. Do momentu nasycenia dymem pracuje ona w obszarze rekombinacji. Zamknięta komora jonizacyjna jest nasycona, dzięki temu ma stały, niezmienny przepływ prądu. Komora zamknięta jest źródłem prądu stałego. Komory czujki dymu  różnią się opornością dynamiczną (oporność komory otwartej jest o połowę mniejsza niż oporność komory zamkniętej). Komora otwarta zwiększa swój opór gdy wypełniona zostanie gazem. Zjawisko to nie zmieni jednak prądu przepływającego przez te komory jonizacyjne(komory połączone są ze sobą szeregowo), ponieważ wymusza to komora zamknięta. Zmieni się jednak stosunek napięć obu komór jonizacyjnych. Potencjał się nie zmieni, gdyż w komorze otwartej napięcie wzrośnie a zamkniętej zmaleje. W wyniku tego na zwoju pomiędzy nimi nastąpi wzrost napięcie, który spowoduje zapalenie lampy z zimną katodą. Powstały prąd uruchamia urządzenie alarmowe.

Do budowy tych urządzeń używa się źródeł o małej aktywności, aby nie stwarzały niebezpieczeństwa użytkownikom. W tym celu używane są izotopy radu 226Ra, ameryka 241Am, plutonu 238Pu oraz kryptonu 85Kr. Trzy pierwsze posiadają aktywność w przedziale 5 – 3000 kBq, krypton zaś ma większą aktywność równą kilkudziesięciom MBq.
Czujki polskiej produkcji posiadają źródło promieniowania w postaci tlenku ameryku zmieszanego ze złotem. Z tego formułowany jest pasek, który układa się na podłożu srebrnym o większej szerokość. Następnie w wysokiej temperaturze (ok. 800 ⁰C) spiekane są w piekarniku. Po schłodzeniu pokrywane są złotem i zwalcowywane na gorąco w celu osiągnięcia 0,2 mm grubości. Z otrzymanej foli wykrawane są krążki i umieszczane w specjalnej osłonce. Szczegółowa budowa czujki dymu została przedstawiona na rysunku poniżej.

 
Rys. 3 Schemat czujki dymu

Eliminatory ładunków elektrostatycznych, przykład zastosowania urządzeń jonizacyjnych w przemyśle

W celu usunięcia zgromadzonego, nadmiernego ładunku stosuje się eliminatory ładunków elektrostatycznych. W tym celu wykorzystuje się emitery promieniowania alfa bądź beta, które powodują wysoką jonizacje ośrodka z którymi oddziałuje. Jonizacja powietrza wywołana takim źródłem spowoduje powstanie obszaru przewodzącego, co zapobiegnie powstaniu dużej różnicy potencjałów pomiędzy powietrzem a ładunkiem zgromadzonym na dowolnej powierzchni. Jonizację powietrza można wywołać generatorami jonów zasilanych elektrycznie lub izotopami promieniotwórczymi. Izotopy promieniotwórcze nie powodują tak dużej jonizacji miejscowej ale nie potrzebują źródła prądu.

Eliminatory promieniotwórcze ładunków elektrostatycznych zbudowane są ze źródła promieniowania umieszczonego w uziemionej obudowie. Pudełko to umieszczane jest w optymalnej odległości od materiału, na którym gromadzą się ładunki. Odległość ta jest wyznaczana na podstawie efektywności jonizacji. Efekt jonizacji zależy, a tym samym odległość zależy od zastosowanego izotopu i rodzaju promieniowania jakie emituje. Dla źródeł beta (tal 204Tl; strąt  90Sr/ iterb 90Y) od 30 do 70 cm (odpowiednio), dla źródeł gamma np. plutonu 239Pu tylko 3-6 cm. Źródła umieszczane są w płytkach, których aktywność całkowita wynosi 1,85 MBq. W każdy eliminatorze ładunków znajduje się od kilku do kilkudziesięciu płytek ułożonych w jednej płaszczyźnie. Eliminatory maja dwa możliwe położenia źródła: robocze (aktywne) i ochronne (w osłonie).
 


Tab. 1. Zestawienie gałęzi przemysłu w których wykorzystuje się eliminatory ładunków elektrostatycznych.

Chromatografy gazowe, nieświadome zastosowanie urządzeń jonizujących w laboratoriach

W chromatografach gazowych, służących do analizy mieszanin substancji gazowych i lotnych cieczy, wykorzystanie znalazły detektory jonizacyjne o dużej czułości. Daje on sygnał elektryczny powstały w wyniku odebrania przez detektor substancji. Substancje przesuwane są przez chromatograf w wyniku oddziłowywania z gazem nośnym. Użyty w tym urządzeniu radiofonizujący detektor jest mikrobjętościową komorą jonizacyjną. Zbudowany jest on ze źródła promieniowania beta. Promieniowanie to jonizuje gaz nośny wraz z jego zawartością (badanymi substancjami). Proces ten powoduje powstanie ładunków elektrycznych, które odbierane są przez detektor jako prąd jonizacyjny elektrod detektora. Wartość powstałego w ten sposób prądu zależy od substancji badanych. Wartość prądu komory jonizacyjnej zależy od: promieniowania, gęstości gazu (detektor argonowy), przekroju czynnego na jonizację cząstek gazu (detektor przekroju czynnego; gazem nośnym jest wodór, bądź tlen) i rekombinacji jonów powstałych w gazie (detektor wychwytu elektronów). Cechą wspólną dla wszystkich wymienionych detektorów jest posiadanie źródła promieniowania. Źródłem promieniowania w chromatografach gazowych jest wodór 3H, nikiel 63Ni, strąt  90Sr/ iterb 90Y. Dzięki izotopom można otrzymać skuteczną jonizację a tym samym wartość prądu na detektorze rzędu 10-8 A (źródło trytowe).

Podsumowanie

Komory jonizacyjne są powszechnie użytkowane, co sprawia, że z urządzeniami jonizacyjnymi spotykamy się na co dzień, mimo, że jesteśmy tego nieświadomi.

Autor: Karolina Wójciuk

Literatura

[1] http://pl.wikibooks.org/wiki/Wst%C4%99p_do_fizyki_j%C4%85dra_atomowego
[2 ] P. W. Atkins. 2008. Chemia fizyczna. Wydawnictwo Naukowe PWN
[3] K. Korbel. 2005. Układy elektroniki „Front End”
[4] D. Middleton. 1960. An Introduction to Statistical Communication Theory. McGraw-Hill, New York,
[5]  D.H. Wilkinson. 1930. Ionisation Chambers and Counters. Cambridge University Press.



Tagi: komora jonizacyjna, płaska komora jonizacyjna, czujki dymu, chromatograf, eliminatory ładunków elektrostatycznych, lab, laboratoria, laboratorium
Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje



Informacje dnia: Biologia przystosowała człowieka do przeżywania sytuacji stresowych Wiadomo, jak niektóre bakterie rozkładają plastik Sztuczna inteligencja badając oczy, oceni ryzyko chorób serca Szczepionka przeciwko wirusowi HPV Całe “okablowanie” mózgu muszki opisane Dzięki pracy noblistów AI stała się jedną z najważniejszych technologii Biologia przystosowała człowieka do przeżywania sytuacji stresowych Wiadomo, jak niektóre bakterie rozkładają plastik Sztuczna inteligencja badając oczy, oceni ryzyko chorób serca Szczepionka przeciwko wirusowi HPV Całe “okablowanie” mózgu muszki opisane Dzięki pracy noblistów AI stała się jedną z najważniejszych technologii Biologia przystosowała człowieka do przeżywania sytuacji stresowych Wiadomo, jak niektóre bakterie rozkładają plastik Sztuczna inteligencja badając oczy, oceni ryzyko chorób serca Szczepionka przeciwko wirusowi HPV Całe “okablowanie” mózgu muszki opisane Dzięki pracy noblistów AI stała się jedną z najważniejszych technologii

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje