Laboratoria.net
|
Zamknij X
|
Wśród dzikich gatunków spokrewnionych z pszenicą zwyczajną, jak również form diploidalnych i tetraploidalnych pszenicy występuje wysoka zmienność w składzie białek glutenowych, co czyni je atrakcyjnymi źródłami nowych genów, które mogły by być wykorzystanie do zwiększania jakości wypiekowej mąki z pszenicy zwyczajnej, jak również wprowadzania nowych cech prowadzących do otrzymywania nowych produktów (GIANIBELLI I IN., 2001; PFLUGER I IN., 2001). Łatwość z jaką można wykorzystać tę zmienność zależy od stopnia pokrewieństwa formy dzikiej z formą uprawną. Dzikie gatunki należące do pod-plemienia Triticinae charakteryzują się różnym stopniem powinowactwa cytogenetycznego oraz odległości filogenetycznej między sobą oraz formami uprawnymi. Na podstawie tego czy genomy form dzikich są homologiczne między sobą lub względem form uprawnych wyróżniamy dwie grupy: grupę diploidalnych donorów genomów A (T. urartu) oraz D (T. tauschii) dla form uprawnych pszenicy, a także gatunków poliploidalnych, które mają jeden lub dwa wspólne genomy z gatunkami uprawnym np. T. dicoccoides (AABB) lub T. timopheevii (AAGG). Drugą grupę stanowią gatunki daleko spokrewnione z formami uprawnymi. Niski poziom zmienności glutenin i gliadyn kodowanych przez genom D u pszenicy zwyczajnej może być poszerzony poprzez wprowadzanie genów z diploidalnego przodka tego gatunku T. tauschii. Transfer genów z T. tauschii może odbywać się bezpośrednio poprzez krzyżowanie z pszenicą zwyczajną, lub pośrednio poprzez tworzenie syntetycznych heksapoidów w wyniku krzyżowania z pszenicą twardą (GIANIBELLI I IN., 2001; PFLUGER I IN., 2001; SHEWRY I IN., 2003). Jak już zostało wspomniane jedną z metod zwiększania wartości wypiekowej pszenicy zwyczajnej jest zwiększenie ilości genów odpowiadających za ekspresję podjednostek wysokocząsteczkowych glutenin. Jednym ze sposobów mogłaby być zamiana obecnych w locus Glu-A1 pszenicy zwyczajnej, alleli null lub kodujących podjędnostke typu x, z odpowiadającym im w loci z T. urartu, T. monococcum (AA), T. dicoccoides (AABB) lub T. timopheevii (subsp. timopheevii and subsp. araraticum) (AAGG), które odpowiedzialne są za ekspresję obydwu podjednostek typu x oraz y. W pracy ROGERS i IN. (1997) wykazano pozytywny efekt na wytrzymałość glutenu podczas introdukcji allelu Glu-A1 kodującego dwie podjednostki z T. thaoudar. Również CIAFFI I IN. (1995) wprowadzili allel Glu-A1 odpowiedzialnego za ekspresję podjednostek typu x oraz y z T. dicoccoides do pszenicy twardej, podczas próby otrzymania linii charakteryzujących się zadowalającymi cechami wypiekowymi oraz dobrą jakością makaronu. Niektóre z tych linii odznaczały się znaczną wytrzymałością oraz zdolnością wypiekową ciasta, na podobnym poziomie jak użyte jako próba kontrolna odmiany pszenicy zwyczajnej. Natomiast w przypadku gdy chromosom pochodzący z gatunku spokrewnionego z pszenicą jest homoeologiczny i niehomologiczny wykorzystuje się inne metody by zainicjować rekombinację oraz transfer pożądanych genów pomiędzy dwoma genomami. Tego rodzaju podejście nazwano inżynierią chromosomową, w której wymiana fragmentów chromosomów pomiędzy pszenicą zwyczajną a spokrewnionymi z nią gatunkami należących do podplemienia Triticeae możliwe jest dzięki indukowanej rekombinacji homoeologicznej. Z wykorzystaniem tej metody udało się dokonać rekombinacji pomiędzy chromosomem 1U z Aegilops umbellulata a homoeologiem pszenicy zwyczajnej, która spowodowała wymianę allela null obecnego w locus Glu-A1 odmiany Chinese Spreing z locus Glu-A1 Aegilops umbellulata, odpowiadającego za ekspresję dwóch podjednostek HMW (SHEWRY I IN., 2003). Metoda ta została również wykorzystana do przeniesienia homoeoloci w innych gatunkach zbóż. LUKASZEWSKI I CURTIS (1994) zastosował inżynierię chromosomową do wprowadzenia fragmentu zawierającego loci Glu-D1 kodującego pary alleli 1Dx5 + 1Dy10 i 1Dx2 + 1Dy12 do chromosomów 1R oraz 1A pszenżyta w celu poprawienia własności wypiekowych tego zboża.
Podsumowanie
Rola jaką pełni pszenica w produkcji żywności oraz żywieniu człowieka przyczyniła się do prowadzenia dużej liczby badań nad tym gatunkiem. Jednym z kierunków jest analiza białek glutenowych. Białka glutenowe dzielimy na dwie frakcje: rozpuszczalne w alkoholu gliadyny oraz nierozpuszczalne gluteniny. Różnią się one nie tylko budową, ale pełnią one również odmienne funkcje w kształtowaniu właściwości technologicznych makaronu oraz wypiekowych chleba. Uważa się, że gluteniny odpowiadają za siłę i elastyczność glutenu, natomiast gliadyny wpływają na lepkość i rozciągliwość ciasta. Cechy te są warunkowane strukturą oraz zawartością poszczególnych frakcji glutenu. Gluteniny oraz gliadyny są kodowane przez poszczególne loci obecne na chromosomach homologicznych. Ich poznanie pozwala na zrozumienie kształtowania się właściwości technologicznych produktów z pszenicy, jak również stwarza szansę dla hodowców oraz naukowców zajmujących się ulepszaniem tego zboża na wprowadzanie i polepszenie cech jakościowych mąki pszennej.
Autor: Aleksandra Gogół
Uniwersytet Przyrodniczy w Lublinie
Instytut Genetyki, Hodowli i Biotechnologii Roślin
Ul. Akademicka 15, 20-950 Lublin
e-mail: aleksandra.gogol@up.lublin.pl
Literatura
BARAK, S., MUDGIL, D., KHATKAR, B.S. 2015. Biochemical and functional properties of gliadins: a review.Critical Reviews in Food Science and Nutrition. 55 (3), 357-368.
CIAFFI M., LAFIANDRA D., TURCHETTA T., RAVAGLIA S., BARIANA H., GUPTA R., MACRITCHIE F. 1995. Breadmaking potential of durum wheat lines expressing both x and y type subunits at the Glu-A1 locus. Cereal Chemistry. 72, 465–469.
D’OVIDIO R., MASCI S. 2004. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science, 39, 321-339.
EDWARDS N.M., MULVANEY S.J., SCANLON M.G., DEXTER J.E. 2003. Role of Gluten and Its Components in Determining Durum Semolina Dough Viscoelastic Properties. Cereal Chemistry. 80(6),755–763.
FAOSTAT 2015 (http://faostat3.fao.org/browse/Q/QC/E).
FRANASZEK S., LANGNER M., SALMANOWICZ M. 2013. Niskocząsteczkowe białka gluteninowe i ich wpływ na jakość wypiekową pszenicy. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin. 269, 3-13.
GIANIBELLI M. C., GUPTA R. B., LAFIANDRA D., MARGIOTTA B., MACRITCHIE F. 2001. Polymorphism of high Mr glutenin subunits in Triticum tauschii: Characterisation by chromatography and electrophoretic methods. Joural of Cereal Science. 33, 39–52.
HOSENEY R.C. 1994. Principles of cereal science and technology (2nd ed.). St. Paul,Minnesota, USA: American Association of Cereal Chemists. Inc.
HUANG S., SIRIKHACHORNKIT A., SU X., FARIS J., GILL B., HASELKORN R., GORNICKI P. 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the National Academy of Sciences. 99, 8133–8138.
IKEDA T., NAGAMINE T., FUKUOKA H., YANO H. 2002. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics. 104, 680 — 687.
KILIAN B., ÖZKAN H., DEUSCH O., EFFGEN S., BRANDOLINI A., KOHL J. MARTIN W., SALAMINI F. 2007. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Molecular Biology and Evolution. 24, 217–227.
LAN W.X., LAN X.J., WEI Y. M., PU Z.E., ZHENG Y.L. 2009. Quality evaluation of gliadins from Zhengmai 9023a99E18 in wheat. Journal of Plant Sciences. 4,1-9.
LUKASZEWSKI A.J., CURTIS C.A. 1994. Transfer of the Glu-D1 gene from chromosome 1D to chromosome 1A in triticale. Plant Breeding. 112, 177–182.
MASCI S., ROVELLI L., KASARDA D., VENSEL W., LAFIANDRA D. 2002. Characterization and chromosomal localization of C-type low-molecular- weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theoretical and Applied Genetics. 104, 422 - 428.
MATSUOKA Y. 2011. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification. Plant Cell Physiology. 52(5), 750–764.
OHM J., HARELAND G., SIMSEK S., SEABOURN B., MAGHIRAN, E., DOWELL F. 2010. Molecular weight distribution of proteins in hard red spring wheat: relationship to quality parameters and intrasample uniformity. Cereal Chemistry. 87, 553-560.
PARK S.H., BEAN S.R., CHUNG O.K., SEIB P.A. 2006. Levels of protein and protein composition in hard winter wheat flours and the relationship to breadmaking. Cereal Chemistry. 83, 418-423.
PAYNE P.I., NIGHTINGALE M. A., KRATTIGER A. F., HOLT L.M. 1987. The relationship between HMW glutenin subunit composition and bread making quality of Britishgrown wheat varieties .Journal of the Science of Food and Agriculture. 40,51-65.
PFLUGER L.A., D’OVIDIO R., MARGIOTTA B., PENA R., MUJEEB-KAZI A., LAFIANDRA D. 2001. Characterisation of high- and low-molecular weight glutenin subunits associated to the D g enome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theoretical and Applied Genetics. 103, 1293–1301.
ROGERS W.J., MILLER T.E., PAYNE P.I., SEEKINGS J.A., HOLT L. M., LAW C.N. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for breadmaking quality of alleles from T. boeoticum Boiss ssp. thaoudar at Glu-A1 encoding two high molecular weight subunits of glutenin. Euphytica. 93, 19–29.
SHEWRY P.R., NIGEL G., LAFIANDRA D. 2003. Genetics of Wheat Gluten Proteins. Advances in Genetics. 49, 111-184.
TSUNEWAKI K. 2009. Plasmon analysis In the Triticum-Aegilops complex. Breeding Science. 59: 455–470.
UTHAYAKUMARAN S., TOMOSKOZI S., TATHAM A.S., SAVAGE A.W.J., GIANIBELLI M. C., STODDARD, F.L., BÉKÉS F. 2001. Effects of gliadin fractions on functional properties of wheat dough depending on molecular size and hydrophobicity. Cereal Chemistry. 78, 138-141.
UTHAYAKUMARAN S., BEASLEY H.L., STODDARD F.L., KEENTOK M., PHAN-THIEN, N., TANNER R. I., BÉKÉS F. 2002.Synergistic and additive effects of three HMW glutenin subunit loci. I. Effects on wheat dough rheology. Cereal Chemistry. 79, 294-300.
Uthayakumaran, S., Tomoskozi, S., Tatham, A. S., Savage, A. W. J., Gianibelli, M. C., WAN Y., SHEWRY P. R., HAWKESFORD M. J. 2013. A novel family of γ-gliadin genes are highly regulated by nitrogen supply in developing wheat grain. Journal of Experimental Botany. 6(1), 161-168.
ZHANG Y., LI X., WANG A., AN X., ZHANG Q., PEI Y., GAO L., MA W., APPELS R., YAN Y. 2008. Novel x-Type High-Molecular-Weight Glutenin Genes From Aegilops tauschii and Their Implications on the Wheat Origin and Evolution Mechanism of Glu-D1-1 Protein. Genetics. 178, 23–33.
ZHANG X., LIU D., ZHANG J., JIANG W., LUO G., YANG W., SUN J., TONG Y., CUI D., ZHANG A. 2013. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat. The Journal of Experimental Botany 64, 2027 — 2040.
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.
Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).
Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.
Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:
dopasować treści stron i ich tematykę, w tym tematykę ukazujących się tam materiałów do Twoich zainteresowań,
dokonywać pomiarów, które pozwalają nam udoskonalać nasze usługi i sprawić, że będą maksymalnie odpowiadać Twoim potrzebom,
pokazywać Ci reklamy dopasowane do Twoich potrzeb i zainteresowań.
Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.
Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.
Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.
Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
Więcej w naszej POLITYCE PRYWATNOŚCI
Recenzje