Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Dygestorium
Strona główna Edukacja
Dodatkowy u góry
Labro na dole

Sterowanie punktami wyjątkowymi ulepszy urządzenia optyczne

Po raz pierwszy na świecie polscy naukowcy zaobserwowali anihilację punktów wyjątkowych pochodzących z różnych punktów degeneracji. Odkrycie może przyczynić się do powstania nowoczesnych urządzeń optycznych, których właściwościami będzie można sterować za pomocą napięcia.

Badania wykonane przez fizyków z Uniwersytetu Warszawskiego i Wojskowej Akademii Technicznej we współpracy z naukowcami z francuskiego CNRS i brytyjskiego University of Southampton opisano w najnowszym numerze „Nature Communications”.

Fizycy z UW w międzynarodowym zespole badawczym zaobserwowali anihilację punktów wyjątkowych pochodzących z różnych punktów degeneracji. Obserwacji dokonano we wnękach optycznych wykonanych w WAT. We wnęce optycznej warunki propagacji światła są modulowane poprzez sterowanie zamkniętym wewnątrz materiałem ciekłokrystalicznym. W takim rezonatorze optycznym możliwe jest sterowanie tzw. punktami wyjątkowymi.

ABSTRAKCYJNE POJĘCIA POTRZEBNE DO WYJAŚNIENIA ZJAWISK

Jak przypominają naukowcy cytowani w informacji prasowej z UW i WAT, świat zbudowany jest z cząstek elementarnych. Większość z nich ma swoje antycząstki (tak jak to mam miejsce w przypadku elektronu – jego antycząstką jest pozyton). Gdy cząstka i antycząstka spotkają się ze sobą, dochodzi do zaniku obu (anihilacji). Tak się dzieje, gdy spotka się materia z antymaterią. Znane są także kwazicząstki i kwaziantycząstki, mające one swe źródło we wzburzeniach np. ładunku, drgań drobin materii, np. w kryształach.

"Kwazicząstkami mogą być nawet abstrakcyjne matematyczne pojęcia, o ile uda się je zrealizować w układach fizycznych. Pojęcie kwazicząstek upraszcza opis zjawisk kwantowych" – wyjaśnia dr hab. Jacek Szczytko z Wydziału Fizyki UW, jeden z autorów publikacji.

Zaznacza, że bez uogólnienia pojęciem kwazicząstek trudno by było zrozumieć działanie tranzystora, diody świecącej, nadprzewodnika i niektórych komputerów kwantowych.

Wśród takich abstrakcyjnych pojęć są punkty wyjątkowe. "Są to szczególne parametry układu prowadzące do uwspólniania dwóch różnych rozwiązań, które mogą istnieć tylko w układach tłumionych, to jest takich, w których oscylacje powoli zanikają w czasie. Punkty wyjątkowe można wykorzystać do tworzenia ultraczułych sensorów, laserowania jednomodowego czy transportu jednokierunkowego" – wyjaśnia prof. Guillaume Malpuech z francuskiego Institute Pascal, CNRS we francuskim Aubiere.

"Każdy punkt wyjątkowy charakteryzuje się także niezerowym ładunkiem topologicznym. Ładunek topologiczny to matematyczną cechą, która opisuje fundamentalne właściwości geometryczne i pozwala określić który punkt wyjątkowy będzie antycząstką dla innego punktu wyjątkowego" – dodaje prof. Dmitry Solnyshkov z tego samego instytutu.

REZONATOR WYPEŁNIONY CIEKŁYM KRYSZTAŁEM

Naukowcy badali zjawiska w rezonatorze optycznym wypełnionym ciekłym kryształem. Ciekłe kryształy są fazą łączącą cechy dwóch stanów skupienia materii – ciekłego i stałego.

Jak wyjaśnił dr hab. Wiktor Piecek z Wydziału Nowych Technologii i Chemii WAT, w cienkich, mikrometrowych warstwach ciekłych kryształów można wyróżnić kierunki o szczególnych właściwościach optycznych, tzw. osie optyczne. Ta właściwość decyduje o prędkości propagacji światła o zadanym kierunku i polaryzacji. Połączenie tej cechy z faktem, że ciekłe kryształy wykazują zróżnicowaną w przestrzeni przenikalność elektryczną, umożliwia sterowanie polem elektrycznym warunków propagacji światła przez warstwę ciekłego kryształu – jest to m.in. podstawa działania wyświetlaczy ciekłokrystalicznych - LCD.

W strukturach wykonanych w WAT zastosowano unikalny, opracowany i również wykonany w WAT ciekły kryształ, generujący wyjątkowo dużą różnicę prędkości światła biegnącego wzdłuż różnych osi optycznych (dwójłomność).

"Całość tworzy tzw. wnękę optyczną – rezonator, przez którą przechodzi światło o długości fali takiej, że odległość pomiędzy zwierciadłami stanowi dokładnie wielokrotność połowy długość fali" – tłumaczy współautor badania, prof. Piecek.

Warunek ten jest spełniony dla tak zwanych modów rezonansowych wnęki, czyli światła o określonej długości fali (energii), polaryzacji i kierunku propagacji. Obecność ciekłego kryształu, którego orientację można zmieniać przez przyłożenie napięcia, pozwala na strojenie warunków wystąpienia modów wnękowych. Dodatkowo warunek rezonansu zmienia się, gdy światło pada na wnękę pod kątem, co może prowadzić w szczególności do sytuacji, w której różne mody wnękowe mogą się ze sobą przecinać, czyli mieć tę samą energię pomimo różnej polaryzacji światła.

W rozpatrywanej w artykule konkretnej orientacji ciekłego kryształu, dwa różne mody wnękowe powinny przecinać się jedynie dla czterech konkretnych kątów padania światła na wnękę. Takie założenie pozwoliłoby na uzyskanie idealnej struktury bez żadnych strat światła. W rzeczywistości światło uwięzione we wnęce może wydostać się przez nieidealne zwierciadła lub ulec rozproszeniu. Średni czas przebywania fotonu wewnątrz mikrownęki można wyznaczyć na podstawie pomiarów spektroskopowych.

Co więcej, ze względu na wyróżnianie kierunków przez warstwę ciekłokrystaliczną zaobserwowano różnicę w rozpraszaniu światła spolaryzowanego wzdłuż i prostopadle do osi optycznej warstwy ciekłego kryształu. Na skutek tego, w miejscu każdego punktu degeneracji zaobserwowano parę tak zwanych punktów wyjątkowych, dla których zarówno energia, jak i czas życia fotonu we wnęce jest taki sam.

WYJĄTKOWE PUNKTY – WYJĄTKOWE ODKRYCIE

"W badanym układzie zaobserwowano, że położeniem punktów wyjątkowych można sterować przez zmianę napięcia przykładanego do wnęki. Wraz ze zmniejszaniem napięcia punkty wyjątkowe powstałe z różnych punktów degeneracji zbliżają się do siebie, a dla odpowiednio niskiego napięcia nachodzą na siebie. Jako że przybliżające się punkty charakteryzują się przeciwnym do siebie ładunkiem topologicznym to w momencie spotkania anihilują" – wyjaśnia Mateusz Król z Wydziału Fizyki UW, pierwszy autor publikacji.

Ismael Spetembre, doktorant w CNRS podkreśla, że takie zachowanie topologicznych kwazicząstek, czyli anihilacja punktów wyjątkowych pochodzących z różnych punktów degeneracji, zostało zaobserwowane po raz pierwszy na świecie. Wcześniejsze prace pokazywały anihilację punktów wyjątkowych, ale były to kwazicząstki, które pojawiały się i znikały dokładnie w tych samych punktach degeneracji.

Punkty wyjątkowe są w ostatnich latach szczególnie intensywnie badane w różnych dziedzinach fizyki. "Omawiane odkrycie może pozwolić na powstanie urządzeń optycznych, których właściwościami topologicznymi będzie można sterować za pomocą napięcia” – podsumowuje komunikat dr hab. Barbara Piętka z Wydziału Fizyki UW.


Źródło: pap.pl


Drukuj PDF
wstecz Podziel się ze znajomymi

Informacje dnia: Twój blat w dygestorium nie spełnia Twoich oczekiwań? Potrzebne regulacje dot. norm i zasad hałasu turbin wiatrowych Naukowcy zbadali, jakie obrazy zapadają częściej w pamięć Człowiek poprzez emisję gazów spowodował ocieplenie Sztuczna inteligencja diagnozuje spektrum autyzmu Autonomiczne hulajnogi elektryczne Twój blat w dygestorium nie spełnia Twoich oczekiwań? Potrzebne regulacje dot. norm i zasad hałasu turbin wiatrowych Naukowcy zbadali, jakie obrazy zapadają częściej w pamięć Człowiek poprzez emisję gazów spowodował ocieplenie Sztuczna inteligencja diagnozuje spektrum autyzmu Autonomiczne hulajnogi elektryczne Twój blat w dygestorium nie spełnia Twoich oczekiwań? Potrzebne regulacje dot. norm i zasad hałasu turbin wiatrowych Naukowcy zbadali, jakie obrazy zapadają częściej w pamięć Człowiek poprzez emisję gazów spowodował ocieplenie Sztuczna inteligencja diagnozuje spektrum autyzmu Autonomiczne hulajnogi elektryczne

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje