Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
PCI
Strona główna Start
Dodatkowy u góry
Labro na dole

Alicja Szuka Plazmy

CERN jest największym na świecie ośrodkiem fizyki cząstek i astrofizyki. Fizycy badają tam z czego zbudowana jest materia, jakie są jej najmniejsze cząstki i co sprawia, że cząstki te trzymają się razem, tworząc niezwykle różnorodne i skomplikowane obiekty o bardzo szerokiej skali wielkości. Odkrycie, że protony i neutrony tworzące jądro atomowe nie są cząstkami elementarnymi, zrewolucjonizowało fizykę wysokich energii i doprowadziło do sformułowania tak zwanego Modelu Standardowego. Model ten wiąże praktycznie wszystkie obserwacje z dziedziny cząstek w jedną, logiczną całość. Protony i neutrony są zbudowane z dwóch rodzajów maleńkich obiektów: kwarków i gluonów, różniących się od siebie między innymi spinem i ładunkiem elektrycznym. Kwarki są obdarzone ładunkiem elektrycznym, a gluony są elektrycznie neutralne. Ich spin jest dwa razy większy od spinu kwarków. Jak dotąd, w naturze kwarki występują jedynie wewnątrz nukleonów i są bardzo silnie ze sobą związane przez gluony. Poza kwarkami i gluonami prawdziwie elementarnymi cząstkami materii są elektrony.

PROGRAM NAUKOWY

Przewidywania Modelu Standardowego dotyczące oddziaływań elektrosłabych zgadzają się z eksperymentami z niezwykłą precyzją. Opisu oddziaływań silnych dokonano w ramach chromodynamiki kwantowej, będącej częścią Modelu Standardowego. Jednak, aby wytłumaczyć to, że cząstki materii posiadają niezerową masę, wprowadzono do teorii hipotetyczną cząstkę, zwaną bozonem Higgsa. Istnienia tej cząstki wymaga spójność Modelu Standardowego. Niestety, w dotychczasowych eksperymentach, mimo ogromnych wysiłków, bozonu Higgsa nie udało się jeszcze znaleźć. Poszukiwanie go jest jednym z najważniejszych elementów programu naukowego eksperymentów ATLAS i CMS na LHC. Model Standardowy, nawet po odkryciu bozonu Higgsa, nie będzie jednak ostateczną i zamkniętą teorią fizyczną. Są pewne argumenty teoretyczne przemawiające za istnieniem głębszych teorii przy wyższych energiach. Cechą wspólną tych teorii, wykraczających poza Model Standardowy, jest pojawianie się nowych, ciężkich cząstek. Ich poszukiwanie stanowi także ważny cel programu naukowego na LHC. Badanie zderzeń ciężkich jąder ołowiu o relatywistycznych energiach prowadzi do zrozumienia zachowania się materii w warunkach ekstremalnie wysokich energii i bardzo wielkich gęstości. Takie warunki panowały tuż po Wielkim Wybuchu. W planowanym eksperymencie ALICE chodzi głównie o jednoznaczne potwierdzenie doświadczalne istnienia nowego stanu materii: plazmy kwarkowo-gluonowej. Wciąż brak pełnej odpowiedzi na pytanie, co się stało z antymaterią we Wszechświecie. Informacji o przyczynach asymetrii pomiędzy ilością materii i antymaterii w przyrodzie mogą dostarczyć zderzenia protonów w eksperymencie LHCb. W eksperymencie tym będzie w ciągu roku produkowanych 1012 neutralnych mezonów B – cząstek, których rozpady mogą dostarczyć informacji o przyczynach tej asymetrii.

NOWA MASZYNA W CERN

Wszystkie wymienione eksperymenty będą wykonywane na budowanym od 2000 roku LHC (Large Hadron Collider – wielki zderzacz hadronów – to jest cząstek ciężkich, np. protonów). W LHC będą badane czołowe zderzenia przeciwbieżnych wiązek protonów o ogromnej masie 1 GeV, przy całkowitej energii 14 TeV. Zderzenia jądro-jądro będą realizowane na wiązkach jąder ołowiu, pędzących z przeciwnych kierunków. Energia całkowita takich zderzeń będzie wynosić 1150 TeV! LHC będzie największym na świecie urządzeniem do zderzania cząstek przy największych energiach, jakie kiedykolwiek osiągnięto w laboratorium. Badanie takich zderzeń stanowi gigantyczne wyzwanie technologiczne. Wykorzystano istniejący już (do eksperymentów LEP) pierścieniowy tunel o obwodzie 27 km, wykopany na średniej głębokości około 100 m pod ziemią pomiędzy górami Jury we Francji i jeziorem Genewskim w Szwajcarii. Natomiast wszystkie elementy rur akceleratorowych muszą być zmontowane od nowa z zegarmistrzowską dokładnością. Podobnie nowej konstrukcji wymagają wszystkie detektory i urządzenia sterujące. Wiązki pierwotne będą wytwarzane w istniejącym w CERN łańcuchu akceleratorów, a po uzyskaniu energii 0,45 TeV, będą wstrzykiwane do LHC. Tam będą się poruszać w próżni, podobnej do próżni kosmicznej, a nadprzewodzące magnesy, pracujące w ekstremalnie niskich temperaturach, będą zakrzywiać ich tory wewnątrz pierścienia. Cząstki będą wykonywać miliony okrążeń, otrzymując przy każdym okrążeniu impuls, czyli porcję energii od pola elektrycznego, aż do uzyskania energii maksymalnej. Każda wiązka będzie się składać z 3 tysięcy paczek cząstek, a każda paczka będzie zawierać 100 bilionów cząstek. Cząstki są tak małe, że szansa na ich zderzenie jest minimalna. Na 200 bilionów cząstek wydarzy się zaledwie 20 zderzeń! Ale paczki będą się spotykać blisko 30 milionów razy na sekundę. W rezultacie LHC będzie generować 600 milionów zderzeń na sekundę. Cztery detektory: ATLAS, CMS, LHCb oraz ALICE, pracujące przy LHC, będą rejestrować wszystkie ślady cząstek powstających w badanych zderzeniach. Są to ogromne urządzenia. Na przykład detektor ATLAS ma wysokość 25 m (pięć pięter) i długość 46 m. Jest największym na świecie detektorem, jaki kiedykolwiek zaprojektowano. Może mierzyć ślady cząstek z dokładnością do 0,01 mm. Wewnętrzne elementy w ATLASIE mają tyle tranzystorów, ile jest gwiazd w całej Drodze Mlecznej. Różne warstwy detektora będą rejestrować ładunki i mierzyć energie cząstek naładowanych i neutralnych. Detektory ATLAS i CMS są detektorami ogólnego przeznaczenia, głównie do poszukiwania bozonów Higgsa oraz innych ciężkich cząstek, których istnienie sugerują różne teorie wykraczające poza Model Standardowy. Detektory ALICE i LHCb są bardziej wyspecjalizowane. LHCb jest nastawiony na poszukiwanie antymaterii we Wszechświecie, a detektor ALICE ma powtórzyć w laboratorium Wielki Wybuch. W budowie wszystkich czterech detektorów miały swój udział grupy polskie. W Krakowie powstał na przykład pakiet do szybkiej symulacji ATLAS oraz algorytmy poszukiwania Higgsa, a także projekt i symulacja systemu wyzwalania i akwizycji danych detektora. Wkładem zespołu krakowskiego w projekt i budowę detektora ATLAS są prace nad odpornymi na promieniowanie dektorami krzemowymi i wyspecjalizowanymi układami scalonymi. Zespół warszawski w eksperymencie CMS zaprojektował, przetestował i obecnie buduje system elektroniki wyzwalania na miony. W eksperymencie ALICE zespoły polskie pracowały przy budowie dwóch podstawowych detektorów – kalorymetru elektromagnetycznego i komory projekcji czasowej. W eksperymencie LHCb zespół polski opracowuje elektronikę do synchronizacji detektora z akceleratorem oraz prototyp koncentratora do przesyłania danych. Panele modułów detektora do LHCb w ultralekkiej technologii wykonywane są w Krakowie.

Małgorzata Nowina-Konopka, Forum Akademickie




Drukuj PDF
wstecz Podziel się ze znajomymi

Informacje dnia: Jazda na rolkach - Czy jest dobrym sportem? Polimer o właściwościach przeciwgrzybiczych Stypendia ministra nauki dla niemal 400 studentów Skuteczniejsze leczenie chorych na nowotwory krwi Tylko 36% transgranicznych wód podziemnych ma ochronę Technologia ultradźwiękowa w diagnostyce chorób Jazda na rolkach - Czy jest dobrym sportem? Polimer o właściwościach przeciwgrzybiczych Stypendia ministra nauki dla niemal 400 studentów Skuteczniejsze leczenie chorych na nowotwory krwi Tylko 36% transgranicznych wód podziemnych ma ochronę Technologia ultradźwiękowa w diagnostyce chorób Jazda na rolkach - Czy jest dobrym sportem? Polimer o właściwościach przeciwgrzybiczych Stypendia ministra nauki dla niemal 400 studentów Skuteczniejsze leczenie chorych na nowotwory krwi Tylko 36% transgranicznych wód podziemnych ma ochronę Technologia ultradźwiękowa w diagnostyce chorób

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje