Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Labro glowna
Strona główna Edukacja
Dodatkowy u góry
Labro na dole

Świat atomów i cząsteczek

Budowę molekuł tworzących komórki można poznać za pomocą różnych technik obrazowania. Uzyskiwane w ten sposób mapy tych samych struktur wbrew pozorom nieco różnią się jednak między sobą. Żeby poznać prawdę o molekułach, potrzebna jest nie tylko kombinacja technik, ale i zrozumienie, jak badają one materię - zwraca uwagę prof. Matthias Bochtler z MIBMiK.

Artykuł w "Structure" autorstwa prof. Matthiasa Bochtlera z Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie, omawia różne sposoby analizy struktur biomolekuł z użyciem promieni rentgenowskich, elektronów i neutronów. W swojej pracy naukowiec określił, jak mapy o rozdzielczości atomowej różnią się między sobą w zależności od sposobu obrazowania.

Jeśli chcemy poznać kształt krzesła czy kubka, nie musimy się specjalnie starać - wystarczy, że postawimy te obiekty w świetle widzialnym. Fotony, które dotrą z tych przedmiotów do naszych oczu, pozwolą nam łatwo ustalić badany kształt. Nieco trudniej jest z obiektami znacznie mniejszymi - np. białkami, kwasami nukleinowymi, hormonami. W badaniu ich struktur nie wystarczy światło widzialne. Posłużyć się trzeba nieco innym “oświetleniem” - wiązkami promieniowania rentgenowskiego, elektronów lub neutronów.

“Każda z tych metod dostrojona jest do różnych aspektów materii, dlatego uzyskiwane w różnych technikach mapy tych samych struktur różnią się między sobą” - czytamy w komunikacie MIBMiK na temat tych badań.

Problem opisany w badaniach prof. Bochtlera porównano tam ze starą hinduską bajką o ślepcach, którzy próbowali opisać słonia. “Każdy z obserwatorów może (za pomocą dotyku- przyp. PAP) zbadać tylko fragment zwierzęcia, a zatem nie jest w stanie uchwycić całej złożoności badanego obiektu” - porównano w komunikacie MIBMiK przesłanym serwisowi Nauka w Polsce. Analogicznie wśród dostępnych metod obrazowania każda bada różne aspekty materii. Okazuje więc badany obiekt z nieco innej perspektywy. “Aby ‘zobaczyć całego słonia’, potrzebujemy kombinacji technik i dogłębnej wiedzy na temat sposobu, w jaki badają one materię” - komentują przedstawiciele instytutu.

I tak promieniowanie rentgenowskie wykrywa gęstość elektronową, podczas gdy elektrony - potencjał elektrostatyczny. Z kolei neutrony są wrażliwe na długość koherentnego rozpraszania jądrowego (NCSL).

W przypadku elektronów - zwraca uwagę MIBMiK - uzyskanie rozdzielczości atomowej jest stosunkowo nowym osiągnięciem, nazwanym "rewolucją rozdzielczości". Co ciekawe, nie jest całkowicie jasne, jaki dokładnie obraz (mapę) "powinno" się zobaczyć, używając elektronów do obrazowania o wysokiej rozdzielczości, nawet w przypadku znanych wcześniej struktur.

Bochtlera zainspirowała technika kriomikroskopii elektronowej (cryo-EM), która pozwoliła na uzyskanie pierwszych map o rozdzielczości atomowej przez grupy prof. Holgera Starka i dr. Ashwina Chari. Mapy te wykazały nieoczekiwane efekty wykorzystania strumienia elektronów do obrazowania. Prof. Bochtler przeanalizował na nowo te prace. “Mapy gęstości elektronowej (ED) uzyskane z użyciem wiązki promieni rentgenowskich oraz mapy potencjału elektrostatycznego (ESP) uzyskane z użyciem wiązki elektronów są powszechnie uważane za równoważne, z wyjątkiem różnic wynikających z błędów pomiarowych. Nasze wyniki pokazują, że założenie to nie jest w pełni słuszne” - wyjaśnia naukowiec z MIBMiK.

“Rewolucja rozdzielczości w kriomikroskopii elektronowej oferuje fascynujące możliwości. Aby móc je w pełni wykorzystać, musimy rozumieć, co mapy te naprawdę pokazują” - stwierdza prof. Matthias Bochtler.

Korzystając z zaawansowanych modeli teoretycznych, takich jak teoria funkcjonału gęstości (DFT) i wzór Bethego-Motta, prof. Bochtler wykazał, że mapy ED i ESP różnią się znacząco w zakresie obrazowania poszczególnych atomów, co znajduje szczególne odzwierciedlenie w przypadku atomów obdarzonych (cząstkowym) ładunkiem. Wykazał również, że zarówno stosunek wkładów od lżejszych i cięższych atomów, jak i wrażliwość na wiązania chemiczne obejmujące zewnętrzne powłoki atomowe oraz ładunek, zależą od rodzaju użytej wiązki.

Badania prof. Bochtlera opublikowane w "Structure" pogłębiają zrozumienie teoretycznych podstaw obrazowania i zwiększają potencjał wykorzystania kriomikroskopii elektronowej w praktyce, w tym w projektowaniu leków.

Jego analiza wskazuje, że wiązki promieniowania rentgenowskiego, elektronów i neutronów są dostrojone do różnych aspektów materii, a zatem są źródłem komplementarnych informacji. Promieniowanie rentgenowskie wykrywa gęstość elektronową, podczas gdy elektrony - potencjał elektrostatyczny. Z kolei neutrony są wrażliwe na długość koherentnego rozpraszania jądrowego (NCSL). - “Rewolucja rozdzielczości w kriomikroskopii elektronowej oferuje fascynujące możliwości. Aby móc je w pełni wykorzystać, musimy rozumieć, co mapy te naprawdę pokazują” - stwierdza prof. Matthias Bochtler.

“Innowacyjna praca analityczna prof. Bochtlera opublikowana w Structure jest doskonałym przykładem tego, jak nauki biologiczne są integralną częścią STEM - nauk przyrodniczych, technologii, inżynierii i matematyki – które łącząc się, umożliwiają zrozumienie podstaw świata, w którym żyjemy” - komentują przedstawiciele jego instytutu.


Źródło: pap.pl


Drukuj PDF
wstecz Podziel się ze znajomymi

Informacje dnia: W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku Popularny lek na tarczycę może mieć związek z zanikiem kości W ostatnich 60 latach światowa produkcja żywności stale rosła Sztuczna inteligencja niesie zagrożenia dla rynku pracy Program naprawczy dla NCBR IChF PAN z grantem KE W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku Popularny lek na tarczycę może mieć związek z zanikiem kości W ostatnich 60 latach światowa produkcja żywności stale rosła Sztuczna inteligencja niesie zagrożenia dla rynku pracy Program naprawczy dla NCBR IChF PAN z grantem KE W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku Popularny lek na tarczycę może mieć związek z zanikiem kości W ostatnich 60 latach światowa produkcja żywności stale rosła Sztuczna inteligencja niesie zagrożenia dla rynku pracy Program naprawczy dla NCBR IChF PAN z grantem KE

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje