Laboratoria.net
|
Zamknij X
|
Naukowcy, których odkrycia umożliwiły uczenie się maszyn i rozwój sztucznej inteligencji - Amerykanin John J. Hopfield oraz Kanadyjczyk Geoffrey E. Hinton - zostali laureatami Nagrody Nobla w dziedzinie fizyki.
Nagrodę Nobla w dziedzinie fizyki za rok 2024 otrzymali wspólnie Amerykanin John J.Hopfield (Princeton University) i brytyjsko-kanadyjski naukowiec Geoffrey E.Hinton (University of Toronto) za "fundamentalne odkrycia i wynalazki, które umożliwiają uczenie maszynowe za pomocą sztucznych sieci neuronowych". Werdykt ogłosił we wtorek w Sztokholmie Komitet Noblowski.
Chociaż komputery nie potrafią myśleć - mogą naśladować funkcje, takie jak pamięć i uczenie się. W latach 40. XX wieku naukowcy opierali się na matematyce, która leży u podstaw sieci neuronów i synaps mózgu. Kolejny element pochodził z psychologii, dzięki hipotezie neurobiologa Donalda Hebba, zgodnie z którą uczenie się zachodzi, ponieważ połączenia między neuronami są wzmacniane, gdy pracują razem.
Naukowcy próbowali odtworzyć sposób funkcjonowania mózgu poprzez budowanie sztucznych sieci neuronowych jako symulacji komputerowych. Neurony mózgu są w nich naśladowane przez węzły, którym nadano różne wartości, a synapsy - reprezentowane przez połączenia między węzłami, które mogą być wzmacniane lub osłabiane.
Pod koniec lat 60. XX wieku zniechęcające wyniki teoretyczne sprawiły, że wielu badaczy podejrzewało, że te sieci neuronowe nigdy nie będą miały żadnego rzeczywistego zastosowania.
Zainteresowanie nimi odżyło w latach 80. XX w. Wtedy właśnie tegoroczni nobliści rozpoczęli ważne prace nad sztucznymi sieciami neuronowymi, wykorzystując zapożyczone z fizyki narzędzia.
John Hopfield skonstruował pamięć skojarzeniową (asocjacyjną), która jest w stanie przechowywać i rekonstruować obrazy oraz inne rodzaje wzorców. Natomiast Geoffrey Hinton wynalazł metodę, która może samodzielnie znajdować pewne właściwości w danych i dzięki temu wykonywać zadania, takie jak identyfikowanie konkretnych elementów na obrazach.
Dzięki ich pracy od lat 80. XX w. powstały podwaliny pod rewolucję uczenia maszynowego, która rozpoczęła się około 2010 roku.
Obecny rozwój dziedziny, którą zajęli się nobliści, stał się możliwy dzięki dostępowi do ogromnych ilości danych, które można wykorzystać do trenowania sieci, oraz wzrostowi mocy obliczeniowej. Dzisiejsze sztuczne sieci neuronowe są często ogromne i zbudowane z wielu warstw. Nazywa się je głębokimi sieciami neuronowymi, a sposób ich trenowania nazywa się głębokim uczeniem."Praca laureatów przyniosła już wielkie korzyści. W fizyce wykorzystujemy sztuczne sieci neuronowe w szerokim zakresie obszarów, takich jak opracowywanie nowych materiałów o określonych właściwościach" — powiedziała Ellen Moons, przewodnicząca Komitetu Noblowskiego w dziedzinie fizyki.
Ich wyniki są też przydatne w systemach rozpoznawania twarzy, automatycznych tłumaczeniach. Odegrały podstawową rolę w rozwoju sztucznej inteligencji.
Wielu badaczy rozwija obecnie obszary zastosowań uczenia maszynowego. Trwają również szerokie dyskusje na temat kwestii etycznych związanych z rozwojem i wykorzystaniem tej technologii.
Wykorzystanie uczenia maszynowego do przeszukiwania i przetwarzania ogromnych ilości danych było niezbędne na przykład do odkrycia bozonu Higgsa. Inne zastosowania obejmują redukcję szumów w pomiarach fal grawitacyjnych pochodzących ze zderzających się czarnych dziur lub poszukiwanie egzoplanet. W ostatnich latach tę technologię zaczęto stosować również przy obliczaniu i przewidywaniu właściwości cząsteczek i materiałów – np. przy obliczaniu struktury cząsteczek białek, która determinuje ich funkcję, lub przy określaniu, które nowe wersje materiału mogą mieć najlepsze właściwości do wykorzystania w bardziej wydajnych ogniwach słonecznych.
Kanadyjsko-brytyjski informatyk i psycholog poznawczy Geoffrey Everest Hinton (ur. 6 grudnia 1947 w Wimbledonie) doktorat zrobił w 1978 r. na University of Edinburgh. Obecnie jest emerytowanym profesorem Uniwersytetu w Toronto (Kanada). Jest uważany za "ojca chrzestnego sztucznej inteligencji", ponieważ opracował metodę uczenia się sztucznych sieci neuronowych, polegającą na rozpoznawaniu wzorców w konkretnym zbiorze danych. W 2023 r. odszedł z pracy w Google, aby ostrzegać przed zagrożeniami związanymi z niekontrolowanym rozwojem i stosowaniem sztucznej inteligencji.
"Jestem oszołomiony. Nie miałem pojęcia, że do tego dojdzie" – powiedział Hinton we wtorek, gdy skontaktował się z nim telefonicznie Komitet Noblowski.
Naukowiec ocenił, że sztuczna inteligencja będzie miała "ogromny wpływ" na cywilizację, przynosząc poprawę produktywności i opieki zdrowotnej. "Będzie to porównywalne z rewolucją przemysłową" - przyznał podczas rozmowy z reporterami i członkami Królewskiej Szwedzkie Akademii Nauk. W jego opinii zamiast przewyższać ludzi pod względem siły fizycznej, sztuczna inteligencja może przewyższyć nas pod względem zdolności intelektualnych. "Nie mamy doświadczenia, jak to jest radzić sobie z mądrzejszymi od nas. I pod wieloma względami będzie to wspaniałe. Musimy się jednak również brać pod uwagę szereg możliwych złych konsekwencji, w szczególności groźbę wymknięcia się tego spod kontroli” – skomentował noblista.
John Hopfield urodził się w 1933 r. w Chicago jako jeden z szóstki dzieci polskiego fizyka Johna Josepha Hopfielda. Jego matka Helen Hopfield również była fizyczką. Doktorat zrobił w 1958 na Cornell University. Jest profesorem na Princeton University.
Nagrodą w wysokości 11 mln koron szwedzkich (ok. 4,2 mln zł) naukowcy podzielą się po równo.
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.
Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).
Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.
Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:
dopasować treści stron i ich tematykę, w tym tematykę ukazujących się tam materiałów do Twoich zainteresowań,
dokonywać pomiarów, które pozwalają nam udoskonalać nasze usługi i sprawić, że będą maksymalnie odpowiadać Twoim potrzebom,
pokazywać Ci reklamy dopasowane do Twoich potrzeb i zainteresowań.
Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.
Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.
Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.
Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
Więcej w naszej POLITYCE PRYWATNOŚCI