Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Reklama1
Strona główna Nowe technologie

Naukowcy rzucają nowe światło na pomiary ukrwienia mózgu

Światło pozwoli lekarzom zdobyć informacje o zmianach w ukrwieniu mózgu ciężko chorych pacjentów, np. z poważnymi uszkodzeniami neurologicznymi - wynika z badań Instytutu Biocybernetyki i Inżynierii Biomedycznej PAN (IBIB PAN) w Warszawie.

Naukowcy z IBIB PAN - we współpracy z Warszawskim Uniwersytetem Medycznym i Oddziałem Intensywnej Opieki Medycznej Szpitala Praskiego w Warszawie - przeprowadzili niedawno optyczne pomiary ukrwienia mózgu u pacjentów z pourazowymi uszkodzeniami mózgu. Badano chorych z obrzękiem mózgu i po wylewach krwi do struktur podkorowych mózgu. W obu przypadkach zaobserwowano różnice względem sygnałów zebranych na zdrowych ochotnikach. Dane z badań zostały niedawno opublikowane przez renomowane czasopismo „NeuroImage”.

Jak przypominają w przesłanym PAP komunikacie przedstawiciele IBIB PAN, prowadzone wcześniej w klinikach całego świata prace nad optycznymi metodami analizy ukrwienia mózgu dawały niejednoznaczne rezultaty. „Wyniki naszych badań, otrzymane za pomocą zaawansowanej aparatury optoelektronicznej, są bardziej przekonujące” - stwierdza dr hab. Adam Liebert, prof. IBIB PAN.

Optyczne metody do monitorowania mózgu wykorzystują fakt, że światło w pewnym stopniu może przenikać przez kości czaszki. Chodzi tu zwłaszcza o światło z zakresu bliskiej podczerwieni, o długościach fal między 650 a 850 nanometrów (nanometr to milionowa część milimetra). Istotne znaczenie mają tu właściwości krwi - a konkretnie hemoglobiny, której utlenowana forma w inny sposób oddziałuje ze światłem niż forma zredukowana. Zjawisko to pozwala oceniać stopień natlenienia obserwowanej części ciała poprzez analizę intensywności światła penetrującego tkankę.

Podstawowymi elementami optycznych urządzeń diagnostycznych są niewielkie źródła światła (diody laserowe) oraz czułe fotodetektory. Źródła i detektory, zwykle oddalone od siebie o 2-5 cm, są zestawiane w pary. Do głowy pacjenta można przyłożyć jednocześnie od kilku do kilkunastu takich par, co potencjalnie pozwala badać znaczną część mózgu.

„W miejscu, gdzie fotony penetrują czaszkę najgłębiej, docierają one do kory mózgowej. To oznacza, że część rejestrowanych fotonów oddziałuje z hemoglobiną krwi krążącej w naczyniach krwionośnych zewnętrznych warstw mózgu” - mówi prof. Liebert.

W IBIB PAN wykonano niedawno pomiary dla rekordowej odległości między źródłem światła a detektorem, wynoszącej 9 cm. Do oceny ukrwienia mózgu użyto niskotoksycznego, optycznego środka kontrastującego – dobrze znanej klinicystom zieleni indocyjaninowej. Była ona podawana pacjentom dożylnie podczas pomiaru.

Przyrząd z IBIB PAN należy do najbardziej zaawansowanej technologicznie grupy urządzeń, rejestrujących czasy przelotu pojedynczych fotonów w tkance. W tej technice źródło światła emituje wiele krótkich (pikosekundowych) impulsów świetlnych. Im dłuższy czas od wyemitowania fotonu do momentu jego rejestracji, tym większa szansa, że oddziaływał on z głębszymi strukturami tkanek wewnątrz czaszki – a więc z korą mózgową.

„Obrazy obu półkul mózgowych, otrzymywane naszym przyrządem, w największej rozdzielczości składają się z 32 pikseli odpowiadających parom źródło-detektor na powierzchni głowy” - mówi doktorant Daniel Milej z IBIB PAN. Przyznaje, że niewielka rozdzielczość przestrzenna wynika z ograniczeń fizycznych. "W optycznych obserwacjach mózgu zjawiska związane z rozpraszaniem światła dominują nad jego absorpcją. Dlatego rozdzielczość tych obrazów jest znacznie mniejsza od typowej dla tomograficznych metod obrazowania medycznego” - dodaje.

O użyteczności aparatury nie decyduje jednak sama rozdzielczość obrazów. Autorzy komunikatu zaznaczają, że główną zaletą przyrządu z IBIB PAN jest nieinwazyjność pomiaru - światło emitowane przez diody laserowe jest całkowicie bezpieczne i nie wywołuje zmian w tkankach.

Równie istotna jest prostota badań. Na głowie pacjenta wystarczy umieścić czepek z umocowanymi w nim światłowodami oraz wstrzyknąć choremu niewielką dawkę środka kontrastującego. Samo badanie trwa zaledwie kilka minut i można je powtarzać wielokrotnie w ciągu dnia. Co więcej, aparatura pomiarowa w wersji laboratoryjnej, a więc jeszcze niezminiaturyzowanej, ma rozmiary lodówki. Jest mobilna i można z nią podjechać do łóżka nawet ciężko chorego pacjenta leczonego w warunkach oddziału intensywnej opieki medycznej. Może być ona też używana na sali operacyjnej.

Zalety optycznych metod obserwacji mózgu widać w zestawieniu z dostępnymi w szpitalach technikami obrazowania. Tomografia komputerowa i rezonans magnetyczny wymagają dużej, stacjonarnej aparatury. Pacjent musi być przetransportowany do wyspecjalizowanej pracowni, z czym wiąże się często konieczność odłączenia go od innego sprzętu medycznego. Ponadto chory musi być unieruchomiony, a samo badanie jest kosztowne. W praktyce szpitale nie dysponują żadną aparaturą pozwalającą bezpośrednio przy łóżku chorego monitorować w sposób ciągły zmiany zachodzące w systemie mikrokrążenia krwi w mózgu.

„Możliwość ciągłego monitorowania parametrów krążenia mózgowego może mieć kluczowe znaczenie dla procesu leczenia pacjentów z poważnymi uszkodzeniami neurologicznymi. Uzyskane wyniki sugerują, że metoda optyczna może być użyteczna w praktyce klinicznej” - mówi anestezjolog dr Wojciech Weigl, który koordynował badania kliniczne nowej metody pomiarowej.

Zanim przyrząd z IBIB PAN trafi do szpitali i klinik, potrzebne są jednak dalsze badania.

Źródło: www.naukawpolsce.pap.pl

Tagi: neurologia, ukrwienie, mózg, lab, laboratorium, biotechnologia, uraz, światło, pacjent, foton, hemoglobina
Drukuj PDF
wstecz Podziel się ze znajomymi

znajdz nas na fcb
Informacje dnia: Stypendia naukowe dla wybitnych młodych naukowców Nanomateriały pomagają w oczyszczaniu wody Pływanie zmniejsza ryzyko zgonu Męska płodność na poziomie molekularnym 16 mln euro dla naukowców zajmujących się żywnością Innowacyjne cewniki medyczne Stypendia naukowe dla wybitnych młodych naukowców Nanomateriały pomagają w oczyszczaniu wody Pływanie zmniejsza ryzyko zgonu Męska płodność na poziomie molekularnym 16 mln euro dla naukowców zajmujących się żywnością Innowacyjne cewniki medyczne Stypendia naukowe dla wybitnych młodych naukowców Nanomateriały pomagają w oczyszczaniu wody Pływanie zmniejsza ryzyko zgonu Męska płodność na poziomie molekularnym 16 mln euro dla naukowców zajmujących się żywnością Innowacyjne cewniki medyczne

Partnerzy

GoldenLine Fundacja Kobiety Nauki Warszawskie Stowarzyszenie Biotechnologiczne (WSB) „Symbioza” Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 QDAY Mlodym Okiem Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab