Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Strona główna Nowe technologie
Dodatkowy u góryTESTO

Kapilary w terapiach medycznych


Jak silnie reagują ze sobą dwie rozpuszczone substancje chemiczne? Wiedza tego typu ma ogromne znaczenie w chemii, biologii molekularnej, ale także w medycynie i farmacji, gdzie służy m.in. do wyznaczania optymalnych dawek leków. Dzięki metodzie opracowanej w Instytucie Chemii Fizycznej PAN w Warszawie, w przyszłości wyznaczanie współczynników dyfuzji substancji chemicznych w płynach oraz stałych równowagi reakcji ma szansę stać się szybkie, tanie, a przede wszystkim: powszechne.

W wielu terapiach medycznych warunkiem skutecznego leczenia jest utrzymanie odpowiedniego stężenia leku we krwi pacjenta. W dobieraniu optymalnych dawek wkrótce mogą pomóc proste urządzenia pomiarowe, wykorzystujące opracowaną w Instytucie Chemii Fizycznej PAN (IChF PAN) w Warszawie metodę pomiaru stałych równowagi związków chemicznych w płynach. Zaledwie kilka mililitrów krwi pozwoliłoby na poczekaniu precyzyjnie dopasować dawkę leku do specyficznych cech organizmu konkretnego pacjenta.

Badania nad dyfuzją są prowadzone w IChF PAN od lat. Bazuje się w nich na zjawiskach zachodzących podczas przepływu cieczy, podobnych do obserwowanych w rzekach. W korycie rzecznym woda płynie szybciej w jego środkowej części niż przy brzegach, a gdy w nurcie pojawiają się wiry, mieszanie wodnych mas zachodzi efektywniej. Właśnie podobna fizyka pomogła naukowcom z IChF PAN opracować prostą metodę wyznaczania współczynników dyfuzji. Najważniejszym elementem aparatury używanej w IChF PAN jest bardzo długa (30 m) i bardzo cienka rurka polimerowa – kapilara. Wewnątrz kapilary płynie ciecz nośna; jest nią woda o temperaturze pokojowej i współczynniku pH odpowiadającym ludzkiej krwi. Kapilara jest ciasno zwinięta, a płynąca woda porusza się z dużą prędkością. Połączenie obu czynników sprawia, że
przepływ w kapilarze nie jest w pełni jednorodny, lecz powstają w nim niewielkie wiry.

Gdy w strugę płynącej w kapilarze cieczy nośnej zostanie wstrzyknięta niewielka ilość badanej substancji, szybko rozciągnie się w długą smugę. Badacze z IChF PAN przyglądali się stężeniu substancji w cieczy nośnej przy wypływie z kapilary. Zgodnie z oczekiwaniami, stężenie było największe w centrum kapilary, a najmniejsze przy ściankach. Wykres rozkładu stężenia badanej substancji wzdłuż średnicy kapilary miał kształt dzwonu, a więc słynnej krzywej Gaussa. „Mimo dużej prędkości przepływu i obecności wirów, udało się nam powiązać zmiany rozkładu stężenia substancji w przekroju na końcu kapilary – czyli, mówiąc prościej, szerokość 'dzwonu' Gaussa – z prędkością przepływu, lepkością cieczy nośnej, krzywizną kapilary i współczynnikiem dyfuzji badanej substancji. Trzy pierwsze czynniki są znane, co oznacza, że aby wyliczyć współczynnik dyfuzji, w praktyce wystarczy zmierzyć szerokość 'dzwonu'”, wyjaśnia doktorantka Anna Lewandrowska (IChF PAN).

„Co ciekawe, wyniki naszych pomiarów były niezgodne z obecnymi modelami teoretycznymi, konstruowanymi na podstawie przybliżonych rozwiązań słynnych równań Naviera-Stokesa”, komentuje prof. Robert Hołyst (IChF PAN). „Równania te, przypomnijmy, opisują ruch płynów, a ich rozwiązania są znane obecnie tylko dla najprostszych przepływów. Musieliśmy więc wyznaczyć doświadczalnie własny wzór opisujący nasz układ pomiarowy i zachodzące w nim zjawiska”. We wcześniejszych wersjach aparatury pomiary prowadzono przy małych prędkościach przepływu, zaledwie 0,05 mililitra na minutę. Analiza jednej substancji wymagała 40 minut, a jej wynik dla niektórych makrocząsteczek był obarczony błędem sięgającym nawet 30%. Obecnie prędkość przepływu jest dwudziestokrotne większa. Czas wyznaczania współczynnika dyfuzji zredukowano
do trzech minut, a dokładność pomiarów wzrosła ponadpięciokrotnie.

Skrócenie czasu analizy jest ważne z punktu widzenia praktyki lekarskiej. Wyznaczenie dawki leku optymalnej dla danego pacjenta wymaga bowiem nie jednego, a trzech pomiarów. „Najpierw musimy wprowadzić do kapilary cząsteczki leku i ustalić szybkość ich dyfuzji. Następnie mierzymy dyfuzję białka, z którym lek ma się wiązać, na przykład albuminy. W trzecim pomiarze wstrzykujemy i lek, i białko, na które on oddziałuje, do kapilary wypełnionej tym samym białkiem. Dopiero porównanie wyników pozwala ustalić, jak wydajnie lek będzie się wiązał z białkiem we krwi pacjenta”, tłumaczy doktorantka Aldona Majcher.

Zgłoszona do opatentowania metoda wyznaczania współczynnika dyfuzji w płynach jest szybka, uniwersalna i prosta. Nie wymaga drogiej i skomplikowanej aparatury pomiarowej, ma więc szansę upowszechnić się i trafić do wielu szpitali i przychodni, a także laboratoriów chemicznych i biologicznych. Eksperymenty w IChF PAN dowiodły, że sprawdza się w przypadku pomiarów dotyczących soli, aminokwasów, peptydów, białek i leków.

Opisane badania zrealizowano z grantów Narodowego Centrum Nauki i Fundacji na rzecz Nauki Polskiej.Materiał prasowy przygotowany dzięki grantowi NOBLESSE w ramach działania „Potencjał badawczy” 7. Programu Ramowego Unii Europejskiej.

Źródło: www.ichf.edu.pl


KONTAKTY:
prof. dr hab. Robert Hołyst
Instytut Chemii Fizycznej Polskiej Akademii Nauk
tel. +48 22 3433123
email: rholyst@ichf.edu.pl




Tagi: dyfuzja, kapilary, krew, lek, substancja chemiczna, rurka, polimer, lab, laboratorium
Drukuj PDF
wstecz Podziel się ze znajomymi

znajdz nas na fcb
Informacje dnia: Zasilanie implantów medycznych z ogniw słonecznych Innowacyjne materiały do magazynowania energii Nowatorskie podejście do regeneracji chrząstki 10. edycja konkursu na innowacje medyczne 12 mln Polaków zmaga się z chorobami dietozależnymi Rusza projekt wykrywający groźne zaburzenia rytmu serca Zasilanie implantów medycznych z ogniw słonecznych Innowacyjne materiały do magazynowania energii Nowatorskie podejście do regeneracji chrząstki 10. edycja konkursu na innowacje medyczne 12 mln Polaków zmaga się z chorobami dietozależnymi Rusza projekt wykrywający groźne zaburzenia rytmu serca Zasilanie implantów medycznych z ogniw słonecznych Innowacyjne materiały do magazynowania energii Nowatorskie podejście do regeneracji chrząstki 10. edycja konkursu na innowacje medyczne 12 mln Polaków zmaga się z chorobami dietozależnymi Rusza projekt wykrywający groźne zaburzenia rytmu serca

Partnerzy

GoldenLine Fundacja Kobiety Nauki Warszawskie Stowarzyszenie Biotechnologiczne (WSB) „Symbioza” Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 QDAY Mlodym Okiem Nanotechnologia Lodz Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab