Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Dygestorium

Naukowy styl życia

Nauka i biznes

Strona główna Informacje
Dodatkowy u góry
Labro na dole

Po drugiej stronie lustra

Nasze ciała zbudowane są z wielu chiralnych struktur, lewo- lub prawoskrętnych. Wśród nich są choćby lewoskrętne aminokwasy, czy prawoskrętna helisa DNA. Jak wyglądałoby jednak życie, gdyby chiralność struktur, z których zbudowane są nasze ciała odwrócić? Gdyby nagle organizm żywy znalazł się po drugiej stronie lustra? Jak wyglądałoby wówczas życie. Aby odpowiedzieć na tak postawione pytanie, zachowania chiralnych molekuł w skali pojedynczej molekuły badają naukowcy z UŁ.

Każdy organizm żywy jest zbudowany z chiralnych struktur, które charakteryzują się tym, że ich lustrzane odbicie jest inne i nienakładalne na obiekt wyjściowy. Białka, tłuszcze, cukry, enzymy, hormony, łańcuch DNA to przykłady takich właśnie chiralnych cegiełek, z których zbudowane są organizmy żywe. Pojedyncza molekuła i jej nienakładalne odbicie lustrzane tworzą parę enancjomerów, które charakteryzują się różnymi właściwościami chiralooptycznymi.

"Wielką tajemnicą życia na Ziemi jest fundamentalne pytanie, dlaczego pewne struktury występują tylko w jednej konfiguracji, na przykład, dlaczego aminokwasy są lewoskrętne, występują tylko w konfiguracji L ('lewej'), a cukry są prawoskrętne o konfiguracji D ('prawej')? Dlaczego helisa kwasu DNA jest zawsze prawoskrętna, a nigdy lewoskrętna w organizmach żywych? Do tej pory nikt nie jest w stanie jednoznacznie odpowiedzieć na tak postawione fundamentalne pytanie dotyczące tak naprawdę istoty i powstania życia na Ziemi" - mówi PAP dr Paweł Krukowski z Wydziału Fizyki i Informatyki Stosowanej Uniwersytetu Łódzkiego (WFiIS UŁ).

Jak wyglądałoby życie, gdyby organizmy żywe nagle znalazły się „po drugiej stronie lustra”? Naukowcy z WFiIS UŁ starają się znaleźć odpowiedź m.in. na takie pytanie. Wspólnie z badaczami z Uniwersytetu Osakijskiego prowadzą intensywne badania nad chiralnością molekularną w nanoskali, czyli na poziomie pojedynczej molekuły przy użyciu skaningowego mikroskopu tunelowego (STM). Badania prowadzone są w ramach projektu naukowego SONATA BIS 7 finansowanego przez NCN.

Naukowcy z zespołu dr. Krukowskiego UŁ zajmują się chiralnymi molekułami heliceny w postaci - jak opisują - sprężynek, prawo- i lewoskrętnych. To związki organiczne, które charakteryzują się silnymi samoistnymi właściwościami chiralooptycznymi, a od lat są wykorzystywane do budowy ogniw fotowoltaicznych i diod elektroluminescencyjnych, a ponadto cieszą się niesłabnącym zainteresowaniem wśród naukowców.

Naukowcy z UŁ badają chiralność pojedynczych molekuł za pomocą STM-u. "Zastosowanie tego mikroskopu umożliwia nam otrzymanie fantastycznej przestrzennej rozdzielczości. Udaje się nam obserwować i identyfikować nawet pojedynczą chiralną molekułę zaadsorbowaną na metalicznym płaskim podłożu. Takie podejście jest rzadkie ze względu na trudność prowadzenia takich badań" – tłumaczy dr Krukowski.

W wyniku oddziaływania między różnymi molekułami heliceny, a także między powierzchnią a molekułą może następować spontaniczna segregacja molekularna - opisuje dr Krukowski. Mogą powstawać domeny molekularne składające się tylko i wyłącznie z jednego enancjomeru. W niektórych przypadkach natomiast obserwuje się tworzenie domen molekularnych składających się z dwóch enancjomerów. Badania pokazują, że rodzaj domen molekularnych, uporządkowanie molekularne bardzo silnie zależy m.in. od rodzaju podłoża i jego symetrii.

Naukowcy badają oddziaływanie międzymolekularne chiralnych molekuł heliceny i wyjaśniają zjawiska spontanicznej segregacji poszczególnych enencjomerów, w jakich przypadkach ona następuje, a w jakich nie. W przyszłości tego rodzaju badania mogą ułatwić np. projektowanie wydajnych diod OLED.

Obecnie badacze konstruują specjalny, unikatowy w skali światowej spektrometr TERS-STM, pracujący w warunkach ultrawysokiej próżni oraz w temperaturze kriogenicznej, który może umożliwić duży postęp w tych badaniach. Jest to urządzenie łączące atomową rozdzielczość przestrzenną jaką umożliwia STM oraz identyfikację chemiczną, jaka jest możliwa przy użyciu spektroskopii Ramana.

„Nowy spektrometr będzie przełomem w identyfikacji chiralności pojedynczych molekuł zaadsorbowanych na powierzchni w oparciu o analizę stopnia polaryzacji kołowej światła rozpraszanego na pojedynczej molekule” – podaje dr Krukowski. Uzyskane dotąd wyniki naukowcy z UŁ chcą zweryfikować właśnie z wykorzystaniem nowopowstałego spektrometru TERS-STM.

Badania oraz identyfikacja enancjomerów jest bardzo istotnym zagadnieniem dla chemików, biologów, fizyków, a także dla przemysłu farmaceutycznego. Pokazuje to np. historia leku na ból głowy i nudności o nazwie Thalidomid z połowy XX wieku. Dopiero po serii negatywnych skutków ubocznych tego leku stwierdzonych u pacjentek w ciąży i urodzonych przez nie dzieci z poważnymi wadami rozwojowymi, badania pokazały, że prawoskrętne molekuły chiralne są bardzo niebezpieczne dla zdrowia ludzkiego - podczas gdy te same molekuły, ale lewoskrętne stanowią efektywny lek. Od tego czasu na świecie przeznaczono ogromne środki finansowe na opracowanie skutecznej metody separacji enancjomerów, czyli oddzielenie molekuł lewoskrętnych od prawoskrętnych.


Źródło: pap.pl


Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje




Informacje dnia: Ekrany dotykowe bez problematycznego indu Świat atomów i cząsteczek Żyjemy w czasach multitożsamości Dlaczego Polki rzadziej jedzą mięso niż Polacy? Co 3 osoba dorosła zagrożona chorobami z powodu braku ruchu Cynk może pomóc chronić uprawy przed zmianami klimatu Ekrany dotykowe bez problematycznego indu Świat atomów i cząsteczek Żyjemy w czasach multitożsamości Dlaczego Polki rzadziej jedzą mięso niż Polacy? Co 3 osoba dorosła zagrożona chorobami z powodu braku ruchu Cynk może pomóc chronić uprawy przed zmianami klimatu Ekrany dotykowe bez problematycznego indu Świat atomów i cząsteczek Żyjemy w czasach multitożsamości Dlaczego Polki rzadziej jedzą mięso niż Polacy? Co 3 osoba dorosła zagrożona chorobami z powodu braku ruchu Cynk może pomóc chronić uprawy przed zmianami klimatu

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje