Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Dygestorium

Naukowy styl życia

Nauka i biznes

Strona główna Informacje
Dodatkowy u góry
Labro na dole

CTRL+X i CTRL+V w DNA


Transpozony, znane jako skaczące geny, potrafią "wyciąć się" z DNA, a potem wkleić w jego inne, często precyzyjnie wybrane miejsce. Naukowcy widzą w nich przyszłość edycji genomów. Polscy badacze dokonali ostatnio trudnego zadania: pokazali, jak wygląda kluczowe białko związane z działaniem transpozonu, kiedy ten "szykuje się do skoku”.

"Nasza praca dokłada kolejną cegiełkę do zrozumienia, jak działa białko, które potrafi wycinać duże fragmenty DNA i wstawiać je w inne miejsce" - podsumowuje w rozmowie z PAP prof. Marcin Nowotny z warszawskiego MIBMiK. Zespół prof. Nowotnego - wspólnie z Josephem Petersem z Cornell University (USA) - opublikował wyniki swoich badań w prestiżowym "Molecular Cell".

Transpozony to pasożyty w genomie. Niektóre z nich nie tylko się przemieszczają, ale wykorzystują też maszynerię komórkową organizmów, aby się namnażać - tłumaczy prof. Nowotny. "Nawet 50 proc. ludzkiego genomu i 70 proc. genomu niektórych roślin może pochodzić właśnie od transpozonów" - mówi (choć w większości transpozony te nie są tam aktywne). Od transpozonów pochodzą również niektóre wirusy, w tym wirus HIV. Istnieją także transpozony, za sprawą których bakterie stają się oporne na działanie antybiotyków. To daje mały wgląd w to, jak powszechne są w naturze „skaczące geny”.

Prof. Nowotny zaznacza, że choć transpozony potocznie nazywane są skaczącymi genami, to - precyzyjnie mówiąc - powinno się o nich mówić jako o skaczącym DNA (bo transpozon nie jest genem, ale może geny zawierać).

Transpozony odniosły niezwykły ewolucyjny sukces i są bardzo zróżnicowane. Niektóre działają przez wycinanie siebie z DNA - i wklejanie się w precyzyjnie wybrane miejsce genomu. To operacja, która przypomina w edytorze tekstu polecenia wytnij i wklej (CTRL+X i CTRL+V). Jeśli naukowcy chcą edytować genom bez żadnych nieprzewidzianych błędów - tak precyzyjnie, jak chcemy edytować tekst - powinni poznać i wykorzystać podobne sztuczki samej natury.

Dlatego marzy się im przygotowanie sztucznego transpozonu, który wklejałby do DNA wybrane geny. Można sobie wyobrazić, że takie narzędzie ratować będzie kiedyś życie i zdrowie osób z chorobami genetycznymi, których DNA koduje wadliwy rodzaj białka. Takie osoby być może mogłyby mieć w ramach terapii dostarczane do organizmu sztuczne transpozony, które w bezpiecznym miejscu wklejałyby się do DNA gospodarza. A wtedy jego organizm mógłby sam produkować sobie lekarstwo - prawidłowe białko niezbędne dla zdrowia.

Jeśli chodzi o możliwości edytowania DNA, głównym narzędziem jest obecnie maszyneria CRISPR-Cas9 (Nobel 2020), czyli genetyczne nożyczki. Mechanizm ten - który naukowcy odkryli podczas badań bakterii - pozwala znajdować w DNA precyzyjnie wybrane miejsce i je przecinać. W miejsce przecięcia mogą wklejać się geny, które są sztucznie dostarczone do komórki. Na razie jednak nikt nie ma gwarancji, że zawsze właśnie tak się stanie, i że w miejscu przecięcia nie będą się tworzyły mutacje. Procedura CRISPR-Cas9 wymaga udoskonalenia. Trzeba więc znaleźć sposób na bardziej precyzyjne wklejenie wybranego genu w miejsce przecięcia i ponowne sklejenie DNA.

Trójwymiarowa budowa cząsteczek transpozazy rozpoznających koniec transpozonu Tn7, określona przy użyciu mikroskopii elektronowej w reżimie kriogenicznym (cryo-EM). Poszczególne cząsteczki transpozazy pokazano w kolorach czerwonym, pomarańczowym, żółtym i oliwkowym. DNA odpowiadające końcowi transpozonu pokazano w kolorach turkusowym, niebieskim i flioletowym. Źródło: Marcin Nowotny z zespołem.

 

Świętym Graalem na tym polu wydaje się właśnie transpozon Tn7, pochodzący od bakterii. Jego wykorzystanie wydaje się możliwe, bo w niektórych jego wariantach naturalnie zakodowana jest właśnie ta, dobrze już poznana, maszyneria CRISPR-Cas9. Transpozon wykorzystuje ją do wyboru miejsca genomu, w które się wstawi.

Jeden z genów transpozonu Tn7 koduje enzym - transpozazę, której zadaniem jest wycięcie kilkunasty tysięcy nukleotydów (liter kodu genetycznego) transpozonu z jednego miejsca i wklejenie go w inne.

Żeby zrozumieć, jak owo skomplikowane zadanie, jakie wykonuje enzym, jest w ogóle możliwe, naukowcy chcą poznać strukturę transpozazy - a więc jej kształt. Bo to właśnie od tego kształtu zależy to, jak działa ona w komórce. Badanie takich białek to bardzo trudne zadanie, gdyż enzym ten składa się z kilkudziesięciu tysięcy atomów. Jest w dodatku bardzo ruchliwy - jego kształt zmienia się w zależności od fazy operacji, którą wykonuje.

Zespół prof. Nowotnego posłużył się kriomikroskopem elektronowym (Nagroda Nobla 2017), który od kilku lat znajduje się w krakowskim Centrum SOLARIS. Dzięki tej technologii badacze mogą obserwować cienie zamrożonych w ruchu, pojedynczych cząsteczek. I na podstawie tych cieni odtwarzać niezwykle skomplikowaną strukturę 3D badanych molekuł.

A molekuła ta - choć składa się z dziesiątek tysięcy atomów - jest nadal malutka. Gdyby zmienić proporcje różnych obiektów i cząsteczkę tę powiększyć do rozmiarów jabłka - analogicznie powiększony człowiek miałby wysokość 20 tys. km, a więc mógłby owinąć sobą pół Ziemi.

Prof. Nowotny w rozmowie z PAP porównuje badane białko do sznura, na który nanizane są korale. "Korale te tańczą w przestrzeni i układają się zupełnie inaczej w zależności od fazy skoku enzymu z jednego miejsca na drugie" - opisuje naukowiec.

W publikacji z "Molecular Cell" zespół pokazał, jak białko to wygląda w momencie, kiedy mości się na DNA (po rozpoznaniu końcówki tego fragmentu DNA, który ma wyciąć).

Naukowcy z całego świata ścigają się jednak, aby pokazać model białka w innych fazach jego działania. I tak np. zespół z Cornell University przedstawił niedawno kształt tego samego białka w momencie wklejania elementu w inne miejsce.

Badaczom udało się więc "sfotografować" niezwykle interesujące cząsteczki w paru ważnych momentach ich pracy. Przed nimi wciąż jednak sporo wysiłku, aby poznać kształt tego białka w jeszcze innych fazach tej operacji. Bez tego trudno będzie zrozumieć w pełni, jak pracuje ta cząsteczka, i jak związany z nią mechanizm wykorzystać w praktyce.


Źródło: pap.pl

Recenzje



http://laboratoria.net/aktualnosci/31454.html
Informacje dnia: Żyjemy w czasach multitożsamości Dlaczego Polki rzadziej jedzą mięso niż Polacy? Co 3 osoba dorosła zagrożona chorobami z powodu braku ruchu Cynk może pomóc chronić uprawy przed zmianami klimatu Tancerze są mniej neurotyczni niż ogół populacji Rrząd planuje, aby minister mógł odwołać dyrektora NCBR Żyjemy w czasach multitożsamości Dlaczego Polki rzadziej jedzą mięso niż Polacy? Co 3 osoba dorosła zagrożona chorobami z powodu braku ruchu Cynk może pomóc chronić uprawy przed zmianami klimatu Tancerze są mniej neurotyczni niż ogół populacji Rrząd planuje, aby minister mógł odwołać dyrektora NCBR Żyjemy w czasach multitożsamości Dlaczego Polki rzadziej jedzą mięso niż Polacy? Co 3 osoba dorosła zagrożona chorobami z powodu braku ruchu Cynk może pomóc chronić uprawy przed zmianami klimatu Tancerze są mniej neurotyczni niż ogół populacji Rrząd planuje, aby minister mógł odwołać dyrektora NCBR

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje