Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Strona główna Artykuły
Dodatkowy u góryTESTO

Chromatografia oddziaływań hydrofobowych (HIC) : wykorzystanie chromatografii do rozdzielania i izolowania makrocząteczek białkowych

Chromatografia oddziaływań hydrofobowych (hydrophobic interaction chromatography- HIC) jest metodą szeroko wykorzystywaną do separacji oraz oczyszczania makrocząsteczek białkowych. Białka adsorbowane są na złożu dzięki występowaniu oddziaływań pomiędzy hydrofobowymi fragmentami białka z silnie hydrofobowymi grupami ligandów, które są trwale umocowane na powierzchni nośnika pozbawionego ładunku elektrycznego. Różne czynniki mają wpływ na zachowanie się cząsteczek białkowych w kontakcie z hydrofobowym adsorbentem. Niektóre z nich mają krytyczny wpływ na rozdzielczość i selektywność metody, a także zdolność wiązania cząsteczek przez złoże [6].


Słowa kluczowe: Chromatografia oddziaływań hydrofobowych, rozdział chromatograficzny, HIC, ligandy, złoże Phenyl Sepharose, α–laktoalbumina,  β-laktoglobulina, złoże Phenyl Sepharose 6FF


Przeważająca większość makrocząsteczek posiada skomplikowaną strukturę wewnętrzną. Rozróżnia się w nich zarówno obszary hydrofilowe , które eksponowane są na zewnątrz cząsteczki w polarnym otoczeniu wody, jak i obszary hydrofobowe tj.  ukryte w jej wnętrzu i eksponowane na zewnątrz przy zmianie środowiska na niepolarne. Ilość obszarów hydrofobowych i ich umiejscowienie w strukturze cząsteczki stanowią indywidualną cechę makrocząsteczek. Dzięki temu możliwy jest ich rozdział pod względem odmiennych właściwości hydrofobowych  [4], [5].


Chromatografii oddziaływań hydrofobowych

Zastosowanie techniki chromatografii oddziaływań hydrofobowych pozwala na rozdzielanie białek na
podstawie różnic w sile oddziaływania obszarów hydrofobowych białka z jeszcze bardziej hydrofobowymi grupami ligandów. Grupy ligandów  umocowane są na powierzchni nośnika, który pozbawiony    jest     ładunku    elektrycznego [7].

W celu związania białka do nośnika hydrofobowego stosuje się bufory o wysokiej sile jonowej środowiska. Najczęsciej stosowany jest 1,5 M roztwór siarczanu amonu, a uwalnianie białek następuje przez ich wymywanie buforem o zmniejszającym się gradiencie soli.  Innym,  powszechnie znanym sposobem elucji jest zwiększenie pH buforu bądź dodatku komponentów wykazujących silne powinowactwo do ligandu lub zwiększające hydrofilność białek. W tym celu stosuje się np. alkohole i aminy    alifatyczne    lub    detergenty    niejonowe [7].


Zdjęcie: Oczyszczanie białek  za pomocą  HIC, [7]

Zalety HIC:
- w technice gradientowej objętość próbki nanoszonej na kolumnę może być wielokrotnie większa od objętości kolumny, a stężenie separowanych substancji może być bardzo niskie;
- HIC pozwala na wielokrotne zatężenie wyjściowego materiału;
- pojemność kolumny jest zwykle bardzo duża;
- rozdzielczość metody jest wysoka.

Wady:

- składniki eluowane w solwencie o dużym stężeniu soli muszą być dializowane bądź poddawane etapowi re-chromatografii techniką filtracji żelowej, co ma na celu usunięcie nadmiaru soli [6].


α–laktoalbuminy jest białkiem charakteryzującym się dużą odpornością  na wysoką temperaturę.
Odmiennie od albumin surowicy krwi, α -laktoalbumina zawiera oligosacharyd, który jest przyłączony do łańcucha polipeptydowego przez grupę b-karboksylową reszty kwasu asparaginowego.  Ludzka  α- laktoalbumina (o masie cząsteczkowej 14 176 Da) zbudowana jest  ze  123 aminokwasów. Ponadto, w jej składzie występują 4 mostki disiarczkowe. Dodatkowo, pierwszorzędowa struktura α-laktoalbuminy jest zgodna ze strukturami α - laktoalbumin u innych gatunków ssaków. Białko to pochodzące z mleka krowiego wykazuje duże podobieństwo w budowie do α-laktoalbuminy pochodzenia ludzkiego [8].



Rozdzielanie α-laktoalbuminy i β-laktoglobuliny z zastosowaniem złoża Phenyl Sepharose (L. Lindahl)

W obecności jonów metali wiele białek podlega znacznym zmianom konformacyjnym. Zmiany te mają wpływ na zmianę właściwości hydrofobowych.  Zjawisko to jest wykorzystywane do izolowania i oczyszczania białek wiążących się z jonami metali. Proteiny obecne  w mleku, a mianowicie α-laktoalbumina i β-laktoglobulina, mają zdolność do wiązania jonów wapnia (Ca2+). Obecność jonów miedzi powoduje, że α-laktoalbumina jest mniej hydrofobowa niż w środowisku ubogim w  te jony. Właściwości hydrofobowe β-laktoglobuliny są słabo zależne od obecności jonów miedzi, dzięki temu stosunkowo łatwo można dokonać separacji tych dwóch białek. W tym celu najczęściej wykorzystuje się złoże Phenyl Sepharose [1], [2].

W pierwszym etapie chromatografii przez kolumnę chromatograficzną przepuszcza się mieszaninę badanych białek w obecności EDTA. W takich to warunkach α-laktoalbumina wiąże się ze złożem, podczas gdy β-laktoglobulina przepływa przez kolumnę prawie bez oddziaływań z nią [1], [2].

W drugim etapie chromatografii pzreprowadza się elucję zaadsorbowanych białek, korzystając z buforu, który w swym składzie zawiera jony wapnia [1].

Wykonanie:

Należy zmieszać po 500 µl (2 mg/ml) α-laktoalbuminy z 500 µl β-laktoglobuliny (2 mg/ml), po czym do próbki dodać 1 ml buforu Tris-HCl – 0,2 M EDTA (pH=7,5).  Próbkę inkubować w temperaturze pokojowej przez 30 minut.
W trakcie inkubacji, pobrać 5 ml złoża Phenyl Sepharose 6FF, przemyć je 3 krotnie 20 ml wody, po czym upakować w plastikowej kolumnie. Przez tak przygotowaną kolumnę przepuścić 50 ml buforu Tris-HCl – EDTA.
Na przygotowaną w ten sposób kolumnę nanieść próbkę mieszaniny białek  i rozpocząć zbieranie materiału wypływającego z kolumny, w postaci 2 ml frakcji. Po wsiąknięciu naniesionej próbki w złoże , należy kolejno przepuścić przez kolumnę :
- 15 ml buforu Tris-HCl- EDTA
- 50 ml buforu Tris-HCl- CaCl2 (ciągle zbierając wypływające z kolumny 2-ml frakcje i oznaczając w nich spektrofotometrycznie zawartość białka).

W powyższych warunkach β-laktoglobulina  powinna opuścić kolumnę bez oddziaływania z nią, i znaleźć się we frakcjach o numerach 2 i 3. Α-laktoalbumina powinna być wyeluowana w momencie, kiedy EDTA zostanie usunięte z kolumny, a jego miejsce zajmą jony Ca2+ (tj. we frakcji nr 8) [1], [2].
Po skończonym rozdziale kolumnę należy przemyć  50 ml wody destylowanej oraz 20% etanolem (15 ml). Tak przygotowaną kolumne można przechowywać w temperaturze pokojowej- chroniąc przed nadmiernym nasłonecznieniem, zaś przed kolejnym użyciem wystarczy ją przemyć 50 ml wody [1], [2], [6].


Co ważne:
- Wszystkie bufory , które będą stosowane do chromatografii cieczowej oraz nanoszone próbki należy filtrować przed użyciem. Próbki zamiast filtrowania można poddać wirowaniu  w warunkach: 5000 x g, 10 min, co ma  na celu zabezpieczenie kolumny przed zatkaniem.

- Bufory dobrze jest przygotować na kilka godzin przed użyciem.  Z kolei, bezpośrednio przed ich zastosowaniem należy sprawdzić wartość pH (i w razie konieczności ponownie doprowadzić do potrzebnej wartości) [1].


Izolowanie enzymów z mieszaniny z wykorzystaniem złoża Phenyl Sepharose (L. Szepesy).

Obecność dużych stężeń soli w roztworze białek przyczyniają się do pojawienia się licznych zmian konformacyjnych w tych białkach. W krańcowych przypadkach zmiany te moga spowodować wytrącenie białek z danego roztworu. Zjawisko wysalania białek bardzo często stosowane jest w celu szybkiej i wstępnej separacji białek. Pozostałe w roztworze białka wykazują silne właściwości hydrofobowe, dzięki czemu można je rozdzielać stosując w tym celu technikę chromatografii oddziaływań hydrofobowych (HIC) [1], [3].
Po niesieniu  na kolumnę próbki (mieszaniny białek)  znajdujących się w środowisku o dużym stężeniu soli, dochodzi do oddziaływań hydrofobowych fragmentów tych białek z hydrofobowymi łańcuchami ligandów, które są trwale związane z nośnikiem. Po odmyciu niespecyficznie zaadsorbowanych białek można eluować związane białka w zależności od ich hydrofobowości, stosując w tym celu eluenty o malejącym stężeniu soli [1], [3].

Wykonanie:


W buforze fosforanowym (zawierającym 1,7 mol/l (NH4)2SO4) mieszaninę białek standardowych tj.:
- cytochrom c o stężeniu 2 mg/ml
- mioglobinę o stężeniu 4 mg/ml
- rybonukleazę o stężeniu 10 mg/ml
- chymotrypsynogen A o stężeniu 3 mg/ml [1], [3].

Należy pobrać 5 ml złoża Phenyl Sepharose 6FF, następnie przemyć je za pomocą wody destylowanej (3-krotnie, po 20 ml). Przygotowane w ten sposób złoże upakować w plastikowej kolumnie, zaś kolumnę zrównoważyć 50 ml buforu fosforanowego (zawierającym 1,7 mol/l (NH4)2SO4).
Korzystając z wyjściowych buforów należy przygotować 15-ml porcje buforu fosforanowego o malejącym stężeniu (NH4)2SO4 tj.: 1,3; 1,1; 0,8 oraz 0,3 M [1], [3].

Przygotowaną mieszaninę białek należy odwirować, a otrzymany po wirowaniu supernatant w objętości 1 ml nanieśc na kolumnę. Po wniknięciu w kolumnę próbki, należy przepuścić przez nią 15 ml buforu fosforanowego , zawierającego 1,7 mol/l (NH4)2SO4, po czym rozpocząć zbieranie wypływającego z kolumny materiału w postaci 2 ml frakcji [1], [3].

Następnie, wymywać z kolumny związane z nią białka, stosując w tym celu wcześneij przygotowane eluenty w objętości 15 ml każdy. Eluenty stosować w kolejności malejącego stężenia (NH4)2SO4.
Po zakończeniu rozdziału chromatograficznego, kolumnę przemyć  50 ml wody oraz 15 ml 20% etanolu. Kolumna może być przechowywana do kolejnego użycia w temperaturze pokojowej.
Zbierane podczas rozdziału frakcje należy oznaczyć spektrofotometrycznie przy λ=280 nm.
Po analizie należy wykonać wykres zależności gęstości optycznej poszczególnych frakcji od objętości elucji [1], [3].

Podczas rozdziału wymywane są białka w następującej kolejności:
- cytochrom c
- mioglobina
- rybonukleaza
- chymotrypsynogen A (jako ostatni składnik) [1], [3].

Literatura:

[1]. Kłyszejko-Stefanowicz L, 2003. Ćwiczenia z biochemii. Wydawnictwo Naukowe PWN, 2003, s. 166-172
[2]. Lindahl L., Vogel H.J., 1984. Metal-ion-dependent hydrophobic-interaction chromatography of α-lactoalbumins. Anal. Biochem., 140: 394 – 402

[3]. Szepesy L., Horvath C., 1988. Species salt effects in hydrophobic interaction chromatography of proteins. Chromatographia, 28: 13-18.

[4]. Jing Jin, 2010. Lipid foulant interactions during the chromatographic purification of virus-like particles from Saccharomyces cerevisiae.  http://discovery.ucl.ac.uk/1302065/1/1302065.pdf

[5].http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/pl/GELifeSciences/products/AlternativeProductStructure_17430/17097303

[6]. http://www.biofizyka.p.lodz.pl/ch6.pdf

[7]. http://www.pttz.org/zyw/wyd/czas/2005,%203%2844%29/01_Rosinski.pdf

[8].http://www.pg.gda.pl/chem/Katedry/Inzynieria/images/data/mk/dydaktyka/trm/l/TRM_cw_1.pdf

opracowała: Lidia Koperwas

Tagi: Chromatografia oddziaływań hydrofobowych, rozdział chromatograficzny, HIC, ligandy, złoże Phenyl Sepharose, α–laktoalbumina, β-laktoglobulina, złoże Phenyl Sepharose 6FF, lab, laboratorium, laboratoria
Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje



znajdz nas na fcb
Informacje dnia: Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej

Partnerzy

GoldenLine Fundacja Kobiety Nauki Warszawskie Stowarzyszenie Biotechnologiczne (WSB) „Symbioza” Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 QDAY Mlodym Okiem Nanotechnologia Lodz Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab