Streszczenie
Utlenianie związków organicznych, w wyniku reakcji następczych procesów (reakcji) Fentona, Habera-Wissa przez wiele lat nie było jasne. Badania nad utlenieniem węglowodorów nasyconych reaktywnymi formami tlenu wskazują, na tworzenie się dodatkowego indywiduum kationorodnika ferrylowego. Generowanie tego rodnika w reakcjach utlenienia węglowodorów nasyconych, zostało wykorzystane w metodzie Gif Chemistry (i jej modyfikacjach), co pozwoliła zoptymalizować proces utlenienia węglowodorów nasyconych. Proces ten może być wykorzystywany w utylizacjo odpadów organicznych.
Skróty
Fe2+/H2O2 – odczynnik Fentona
[Fe4+O]2+ - kationorodnik ferrylowy
[Fe5+O]3+ - kationorodnik nadferrylowy
Gif Chemistry – utlenianie węglowodorów nasyconych
Gif Chemistry GO – utlenianie węglowodorów nasyconych opracowane w Orsay (Gif-sur-Orsay)
Gif Chemistry GoAgg – utlenianie węglowodorów nasyconych opracowane w Aggieland (Gif-sur-Aggieland)
MLCT - przejścia elektronowe z kationu metalu na ligand (ang. Metal ligand charge transfer)
P – pierścień porfirynowy
Wprowadzenie
Najczęściej przyjmowana datą początku badań rodnikowych przyjęto odkrycie reakcji Fentona. Nazwa reakcji pochodzi od nazwiska jej odkrywcy – Henryka Johna Hortsmana Fentona. Opisał on spontaniczną reakcję utleniania kwasów organicznych (winnego, jabłkowego) pod wpływem wody utlenionej w obecności jonów żelaza(II). Z biegiem lat mieszanina żelaza(II) z wodą utlenioną (Fe2+/H2O2) została nazwana odczynnikiem Fentona. Odczynnik ten jest wydajnym lecz nieselektywnym utleniaczem dla większości związków organicznych. Sam mechanizm rekcji Fentona został odkryty znacznie później (prawie pół wieku temu). Stwierdzono mianowicie, iż utleniaczem w reakcji związku organicznego z odczynnikiem Fentona jest rodnik wodorotlenowy, powstający w wyniku reakcji nadtlenku wodoru z żelazem(II). Źródłem rodnika wodorotlenowego jest także redukcja nadtlenku wodoru (Reakcja Habera-Weissa).
Krótka biografia H.J.H. Fenton
Henry John Horstman Fenton urodził się 18 lutego 1854 w Ealing (Londyn). Edukacja jego przebiegała szybko, ale burzliwie. Często popadał w konflikty z władzami Uniwersyteckimi. W roku 1881 otrzymał tytuł magistra, a 25 lat później tytuł doktora nauk chemicznych. W pracy uczelnianej znacząco wyróżniał się nie tylko wiedzą, ale także starannością i dokładnością w wykonywaniu doświadczeń. Wykłady prowadzone przez Fentona prowadzone były w formie debat, budowało to w studentach zainteresowanie i chęci badawcze. Najcenniejsza praca Fentona opisuje reakcje nadtlenku wodoru z żelazem(II), za nią także został przyznany tytuł doktorski. Umarł mając 74 lata w klinice w Londynie.
Prace dotyczące utleniania węglowodorów, kwasu winnego i innych związków w mieszaninie nadtlenku wodoru i żelaza(II) znane są na całym świecie. A mieszanina powodująca utlenienie została nazwana odczynnikiem Fentona. Odczynnik Fentona jest jednym z najefektywniejsze metody utleniania związków organicznych. Wydajność tej reakcji zależy głównie od stężenia H2O2, stosunku molowego żelaza(II):H2O2, a także środowiska (pH roztworu, temperatury).
Reakcje generujące reaktywne formy tlenu
W wyniku reakcji żelaza(II) z nadtlenkiem wodoru powstaje silnie utleniający rodnik wodorotlenowy E°·OH/OH- = 2,31 V oraz rodnik ponadtlenku wodoru.
H2O2 + Fe2+ → Fe3+ + OH- + ·OH k = 76 M-1s-1 (1)
H2O2 + ·OH → HO2· + H2O k = 4,5x107 M-1s-1 (2)
H2O2 + HO2· → ·OH + H2O + O2 k = 10-4 – 2,3 M-1s-1 (3)
Jednak od wielu lat rozważany jest inny mechanizm reakcji (alternatywna do (1)), w której produktem pośrednim jest kationorodnik ferrylowy [Fe4+O]2+.
H2O2 + Fe2+ → OH- + [Fe3+·OH]3+ ↔ H2O +[Fe4+O]2+ ↔ [Fe3+OH-]2+ + ·OH (4)
Kationorodnik ferrylowy jest w równowadze kinetycznej z rodnikiem wodorotlenowym.
Utlenianie nasyconych węglowodorów
Najważniejszym badaczem utlenienia nasyconych węglowodorów do ketonów lub alkoholi był profesor Barton (laureat nagrody Nobla w 1969). Ten typ reakcji nazwano Gif Chemistry, a jej modyfikacje to: GO – opracowana w Orsay (Gif-sur-Orsay) i GoAgg – opracowana w Aggieland (Gif-sur-Aggieland). Gif Chemistry polega na utlenianiu związków organicznych tlenem atmosferycznym w obecności żelaza(II) oraz kwasu octowego w pirydynie. W GoAgg tlen zastąpiono nadtlenkiem wodoru (dla jonów żelaza(III)) lub ponadtlenkiem potasu (dla jonów żelaza(II)). Wersja GO jest reakcją przeprowadzaną elektrochemicznie. W GO produkty utleniania węglowodorów pozostają w roztworze, zaś na elektrodach generowane są rodniki oraz ich produktu reakcji następczych np. reakcji dysproporcjonowania.
Szybkość reakcji Gif jest warunkowana kationorodnikiem nadferrylowym (związek żelaza +5 stopniu utleniania) – reakcja (5). Metoda Gif Chemistry potwierdza, że utlenianie węglowodorów do ich form ketonowych jest selektywne i zachodzi z kationorodnikiem nadferrylowym, jako ragentem. Dodatkowym potwierdzeniem wytworzenia kationorodnika ponadferrlowego jest fakt, iż gdyby generowane były w tej reakcji rodniki wodorotlenowe, reakcja ta byłaby nie specyficzna i powstawały by także produkty całkowitej mineralizacji: dwutlenek węgla i woda. Piryna zapobiega powstawaniu rodników wodorotlenowy. Formą utleniającą jest [Fe5+O]3+
Fe3+ + H2O2 → H+ + [Fe3+-O-OH]2+ → [Fe5+O]3+ + H2O (5)
Fe2+ + H2O· +H+ → H+ + [Fe3+-O-OH]2+ → [Fe5+O]3+ + H2O (6)
Cytochrom P-450
Związek [Fe5+O]3+ stosowany w metodzie Gif jest odpowiednikiem naturalnego cytochromu P-450. Porfirynowy pierścień w P-450 stabilizuje formę kationorodnika ponadferrylowego, przekształcając go do formy [Fe5+OP]3+, gdzie P jest pierścieniem porfirynowym P-450. Powstanie produktu [Fe5+OP]3+ jest spowodowane przesunięciem dodatniego elementarnego nładunku na pierścień porfirynowy, co w ostateczności prowadzi do przekształcenia [Fe5+OP]3+ w jeszcze stabilniejszą formę [Fe4+O(P+)]3+.
Zastosowanie reakcji Fe2+/H2O2
Odczynnik Fentona można zastosować do oczyszczania wody. Produkty organiczne degradują i ulegają mineralizacji pod wpływem rodnika wodorotlenowego. Stwierdzono również, że proces ten zachodzi dużo szybciej i prawie 100% wydajnością w wyniku traktowania reagentów promieniowaniem UV-Vis.
[Fe3+OH-]2+ + hν → Fe2+ + ·OH (7)
W wyniku oddziaływania fotonów następują przejścia elektronowe MLCT (przejścia elektronowe z kationu metalu na ligand). Reakcja ta jest wspomagana przez powstające kationy żelaza(II), które reagują z wodą utlenioną w reakcji następczej produkującej także rodnik wodorotlenowy i przyśpieszają tym samym degradację zanieczyszczeń wód ściekowych.
Odczynnik Fenton może odegrać ogromną rolę w ochronie środowiska i technologiach tam stosowanych. Odczynnik ten w wyniku utlenienia związków organicznych powoduje ich degradację, oczyszczając tym samym z substancji zanieczyszczających. Odczynnikiem tym można degradować komponenty zawierające aromatyczne aminy, barwniki, pestycydy, środki powierzchniowo czynne, a nawet materiały wybuchowe.
Reakcja odkryta przez Fentona ma zastosowanie w przemyśle tekstylnym, chemicznym (produkcja związków), rafineryjnym i in.. Reakcję tą wykorzystuje się także w biologii np. etiologia chorób. Powstający w reakcji Fentona rodnik hydroksylowy, uszkadza DNA, białka, oraz lipidy. Dlatego też reakcja ta odgrywa ważną rolę w procesie starzenia.
Podsumowanie
Reakcja Fentona znana i stosowana na szeroką skalę. Jednak mechanizm reakcji nie jest do końca poznany, jedynie jej produkty końcowe. Możliwości jej zastosownia także, są liczne, ale czy zbadane są już wszystkie?
Autor: Karolina Wójciuk
http://laboratoria.net/artykul/16093.html
Recenzje