Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Labro glowna
Strona główna Artykuły
Dodatkowy u góry
Labro na dole

Elektronowy rezonans magnetyczny i jego zastosowanie w próbkach biologicznych


Spektroskopia EPR jest techniką umożliwiającą uzyskanie cennych informacji dotyczących różnorodnych układów paramagnetycznych, tj. z niesparowanym elektronem, będących obiektem zainteresowania biologów i lekarzy. Jest to metoda bardzo specyficzna pozwala na badania wolnych rodników w różnych próbkach, nawet bardzo złożonych: komórkach, tkankach, płynach ustrojowych.

Elektronowy rezonans paramagnetyczny (EPR, ang. Electron Paramagnetic Resonance) jest metodą spektroskopową pozwalającą na badanie substancji zawierających centra paramagnetyczne. Zastosowanie tej metody do badań próbek biologicznych wynika z kilku zalet tej metody:
  • wysoka czułość (próbki biologiczne zawierają znikome ilości związków badanych); należy pamiętać, ze czułość ta spada w odniesieniu do próbek zawierających dużą ilość wody; czułość aparatu zwiększa się poprzez obniżenie temperatury pomiaru lub liofilizację próbki
  • możliwość pomiaru określonego związku w obecności wielu innych niezidentyfikowanych związków (selektywność metody)
  • krótki czas pomiaru,
  • nieskomplikowaną preparatykę próbek
  • mierzone sygnały pochodzą najczęściej od trwałych wolnych rodników np. semichinonowych lub askorbinianowych

Jeżeli badania przeprowadzane są na komórkach należy pamiętać, iż sygnał EPR będzie zależny od fazy wzrostu komórek i ich fazy cyklu komórkowego. Dane literaturowe dowodzą iż maksimum rodników obserwuje się pod koniec fazy S i na początku mitozy [1].

Elektronowy rezonans paramagnetyczny


Elektronowy rezonans paramagnetyczny jest związany ze zmianą orientacji spinu elektronowego w zewnętrznym polu magnetycznym, wywołanego absorpcją energii pola wysokiej częstości. Zjawisko to obserwuje sie w atomach, cząsteczkach i kompleksach molekularnych posiadających  niesparowane spinowe momenty magnetyczne μs, tworzące centra paramagnetyczne badanych związków. W próbkach biologicznych najczęściej takim centrum paramagnetycznym jest atom żelaza.

Moment magnetyczny μs i spin elektronu S centrum paramagnetycznego są kolinearne, ale przeciwnie skierowane:

μs = -g μBS
μs – magneton Bohra (9,27x10-24 JxT -1)
g – współczynnik zeemanowskiego rozszczepienia

Współczynnik rozszczepienia g określa udział orbitalnego momentu magnetycznego w całkowitym momencie μ danego centrum paramagnetycznego.

W próbkach biologicznych najczęściej obserwowane spiny to S=1/2 oraz S=3/2. Analiza spinu S=1/2 wartości magnetycznej liczby spinowej wynoszą: ms=+1/2 i ms=-1/2. Ze względu na dwie przeciwne orientacje spinu w polu magnetycznym możliwe są dwa poziomy energetyczne: W+1/2=½gμBB i W-1/2=-½gμBB, różnica energii (∆W= W+1/2-W-1/2) tych poziomów rośnie wraz z przyłożonym polem magnetycznym B. Zmiana orientacji spinu nastąpi, gdy zostanie spełniony warunek rezonansu ∆W=hf, czyli zostanie dostarczona energia równa różnicy energetycznej dwóch poziomów. Amplituda sygnału obserwowanego w rejestratorze jest miarą absorpcji mocy mikrofal wywołanej zmianą orientacji spinu elektronów względem kierunku stałego pola magnetycznego [2].

Widma EPR można wykonać nawet na starych aparatach typu Bruker ESP 300. Pomiary te przeprowadza się w temp. 77K, przy mocy mikrofalowej 1 mW, częstości 9,31 GHz, amplitudzie modulacji 3,027 G i stałej czasowej 41 ms (warunki optymalne). Ze względu na niewielką intensywność sygnału EPR wykrywanego w materiałach biologicznych (komórki, homogenizaty, frakcje) badane próbki należy skanować wielokrotnie. W ten sposób poprawiamy stosunek sygnał: szum.

Do identyfikacji sygnału EPR pochodzącego z próbek biologicznych używa się symulacji wykonanych za pomocą programu w który zaopatrzony jest aparat np. Symfonia 1.25 (Bruker Analytisch Messtechnik, DE), co umożliwiło wyznaczenie parametrów widma (współczynnik rozszczepienia spektroskopowego – g, szerokości składowych). Za parametr wyznaczający intensywność sygnału przyjmuje się wartość integrału absorpcji. Otrzymany sygnał EPR dwukrotnie całkuje się, w celu otrzymania wyników ilościowych spinu. Do przekształceń matematycznych można użyć dowolnych programów chociażby - program Microsoft Excel. Wyniki należy powtórzyć, aby móc przeprowadzić analizę statystyczną np. zastosowanie testu t-Studenta. Warto w próbkach biologicznych wydzielić niewielką ilość badanej próbki w celu określenia białka. Następnie sygnał EPR przeliczyć na poziom białka, standaryzuje to pomiar i niweluje błąd osobniczy (różna ilość biomolekuł w każdej komórce).

Przygotowanie próbek biologicznych [3]

Stałą objętość (np. 50 ml) hodowli komórek w fazie wzrostu logarytmicznego o gęstości około 7x105 komórek/ml traktuje się czynnikiem, które wpływ chcemy zbadać. Traktowanie badanym czynnikiem możemy uzależnić od czasu inkubacji (Rysunek 1). Następnie do tak traktowanej hodowli wprowadza się odczynnik donorowy. Odczynnikiem donorowym jest związek, który rozpada się dając rodnik reagujący z biomolekułami w komórce powodując tym samym powstanie związku paramagnetycznego, którego detekcja jest możliwa metodą EPR. Odczynnik donorowy ma ściśle określoną kinetykę rozpadu, dzięki czemu przy wprowadzeniu odpowiedniego stężenia donoru znane jest stężenie końcowe powstałego rodnika. Bardzo ważne jest zachowanie odpowiedniego (stałego) czasu inkubacji próbek biologicznych z donorem.



Rysunek 1. Przykładowe przygotowanie próbek biologicznych do detekcji rodników metodą EPR


Po wprowadzeniu donoru rodników i inkubacji, z próbki należy pozbyć się dodatkowych czynników rozcieńczających próbkę. Jeśli doświadczenie przeprowadzane było na komórkach usuwamy z próbki pożywkę: wirując próbki, dekantujac i przemywając kilkakrotnie buforem. Zagęszczone próbki wprowadzamy do rurek EPR-owskich. Usuwając powstałe pęcherzyki powietrza.

Biologiczne zastosowanie metody EPR [4]


1.    Badanie mechanizmu działania leków
2.    Badanie rodnikowych produktów sterylizacji radiacyjnej
3.    Kontrolowane uwalnianie leku
4.    Oksymetria EPR
5.    Badanie statusu redoks w organizmie
6.    Procesy metaboliczne o mechanizmie rodnikowym
7.    Badanie struktury enzymów z centrum paramagnetycznym


Autor: Karolina Wójciuk


Literatura:

[1] Bartosz G. 2009. Druga twarz tlenu. Wolne rodniki w przyrodzie. Wydawnictwo Naukowe PWN.
[2] Stankowski J., Hilczer W. 2005. Wstęp do spektroskopii rezonansów magnetycznych. Wydawnictwo Naukowe PWN
[3] Wójciuk K. 2011. Wpływ ligandów o dużej masie cząsteczkowej na powstawanie dinitrozylowych kompleksów żelaza. Praca doktorska. Instytut Chemii i Techniki Jądrowej w Warszawie
[4] Zawada K. 2009. Zastosowanie spektroskopii EPR w farmacji i medycynie. Zakład Chemii Fizycznej Warszawskiego Uniwersytetu Medycznego. Analiza farmaceutyczna Tom 65, nr 3, 2009


Recenzje



http://laboratoria.net/artykul/19840.html
Informacje dnia: W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku Popularny lek na tarczycę może mieć związek z zanikiem kości W ostatnich 60 latach światowa produkcja żywności stale rosła Sztuczna inteligencja niesie zagrożenia dla rynku pracy Program naprawczy dla NCBR IChF PAN z grantem KE W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku Popularny lek na tarczycę może mieć związek z zanikiem kości W ostatnich 60 latach światowa produkcja żywności stale rosła Sztuczna inteligencja niesie zagrożenia dla rynku pracy Program naprawczy dla NCBR IChF PAN z grantem KE W Polsce żyje miasto ludzi uratowanych dzięki przeszczepom szpiku Popularny lek na tarczycę może mieć związek z zanikiem kości W ostatnich 60 latach światowa produkcja żywności stale rosła Sztuczna inteligencja niesie zagrożenia dla rynku pracy Program naprawczy dla NCBR IChF PAN z grantem KE

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje