Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
FMM
Strona główna Felieton
Dodatkowy u góry
Labro na dole

Jak pogoda w kosmosie wpływa na nasz świat?

Czy można przewidzieć pogodę w kosmosie? Jakie czynniki na nią wpływają? I w końcu jaki ma wpływ na warunki na Ziemi? Na te pytania odpowiada dr hab. Grzegorz Michałek z Obserwatorium Astronomicznego UJ.


Życie na Ziemi jest całkowicie zależne od Słońca. Wielu z nas wydaje się ono być niezmiennym, a nawet dość nudnym obiektem – w końcu od wieków wygląda tak samo. Jednak już pierwsze obserwacje, wykonane przy pomocy prostych teleskopów, pokazały, że na powierzchni Słońca dostrzec można czasem ciemne plamy. Okazało się, że występują one cyklicznie –  mniej więcej co 11 lat obserwujemy ich kulminację. Przypuszczano, że tak niewielkie „skazy” na powierzchni Słońca nie mają istotnego wpływy na nasze życie. A jednak…

Nocny wpływ Słońca


11 września 1859 roku. W bezchmurny dzień, koło południa, obserwator Słońca Richard Carrington, dostrzegł niezwykłe zjawisko, trwające zaledwie 5 minut: dookoła plam na Słońcu pojawiły się dwie jasne wstęgi. Jeszcze tej samej nocy niebo nad Ziemią rozbłysło z powodu czerwonych, zielonych i purpurowych zórz. Zaobserwowano wówczas również silne wahania ziemskiego pola magnetycznego. Carrington nie tylko zobaczył erupcję na Słońcu, ale z wielką przenikliwością potrafił ją powiązać z zorzami występującymi na Ziemi. Po raz pierwszy zasugerowano, że Słońce wpływa na naszą planetę również w nocy. Ten wpływa związany jest z pogodą kosmiczną.

Pogoda kosmiczna to dział wiedzy odnoszący się do wpływu Słońca na naszą planetę. Bada ona wszystkie zjawiska, które mogą zakłócać prawidłowe działania satelitów, zagrażać życiu i zdrowiu astronautów w kosmosie oraz wpływać na działanie technologii funkcjonujących na Ziemi.

Pogoda kosmiczna jest całkowicie zdeterminowana przez eksplozje na Słońcu. Istnieją dwa ich typy: rozbłyski oraz koronalne wyrzuty materii. Podczas rozbłysku fragment atmosfery słonecznej rozgrzewany  jest do temperatur porównywalnych do tych panujących w jądrze słonecznym  (prawie 10 mln stopni Celsjusza). Temu zjawisku towarzyszy silna emisja promieniowania elektromagnetycznego w całym zakresie widma. Najważniejszym jednak czynnikiem kształtującym pogodę kosmiczną są koronalne wyrzuty materii (inna nazwa: koronalne wyrzuty masy), czyli KWM. Od kilku dekad właśnie one znajdują się w centrum badań służących do prognozowania pogody kosmicznej. Analizując różne zjawiska na Słońcu i jego aktywność, ludzie starają się przewidzieć warunki panujące w okolicy naszej planety. Prognozują pogodę kosmiczną tak, jak meteorologowie prognozują warunki atmosferyczne na naszej planecie. Oczywiście badają inne parametry i zjawiska, ale podejście jest bardzo podobne.

Koronalne wyrzuty materii


W koronie słonecznej energia występuje w trzech postaciach: termicznej, grawitacyjnej oraz magnetycznej. Jednak tylko energia zgromadzona w postaci pola magnetycznego może zaspokoić zapotrzebowanie energetyczne koronalnych wyrzutów materii. Podczas nich ogromne fragmenty słonecznej korony wyrzucane są  w przestrzeń. Najszybsze dotychczas zarejestrowane wyrzuty miały prędkości sięgające 3000km/s.

Jesteśmy pewni, że pola magnetyczne zasilają KWM, ale dokładny mechanizm erupcji nie jest znany. Uważa się, że koronalne wyrzuty materii powstają w wyniku utraty stabilności pól magnetycznych, które produkowane są nieustannie wewnątrz Słońca. W wyniku siły wyporu unoszone są ponad powierzchnię fotosfery. W miejscach, gdzie pola magnetyczne są najsilniejsze, powstają obszary aktywne (ciemne plamy). Pole magnetyczne ulega naprężeniom, tak jak przy naciąganiu cięciwy w zwykłym łuku. W pewnym momencie naprężenia są tak duże, że następuje utrata stabilności. Obserwowane jest wtedy zjawisko rekoneksji pola magnetycznego. Podczas gwałtownej erupcji wyzwalana jest energia, zmagazynowana w naprężonym polu magnetycznym. Ogromne magnetyczne obłoki są wyrzucane do przestrzeni międzyplanetarnej, a plazma, rozgrzewana do wysokich temperatur, generuje gwałtowny wzrost emisji, głównie promieniowania ultrafioletowego oraz promieniowania X. 

Niebezpieczeństwo. Naładowane cząstki pędzą ku Ziemi


Koronalne wyrzuty materii mogą wpływać na naszą planetę w dwojaki sposób. Po pierwsze, generują fale uderzeniowe, które powodują przyspieszenie naładowanych cząstek (elektrony, protony, cząstki alfa, jądra helu) do niebywałych prędkości. Te cząstki docierają do Ziemi w ciągu około 20 minut po rozpoczęciu erupcji na Słońcu. Strumień energetycznych cząstek może utrzymywać się na tak wysokim poziomie nawet przez kilka dni – fala uderzeniowa nieprzerwanie produkuje energetyczne cząstki.

Takie zjawiska mają negatywny wpływ na satelity, powodując m.in. wyładowania niszczące ich konstrukcje oraz destabilizację systemów elektronicznych. Naładowane cząstki jonizują górne warstwy ziemskiej atmosfery, czego rezultatem są zakłócenia w łączności. Oczywiście ziemskie pole magnetyczne chroni nas przed bezpośrednim wpływem tych cząstek na powierzchnię planety. Jedynie cząstki o energiach większych od 1 GeV (gigaelektronowolt, czyli 109 elektronowolta) mogą docierać bezpośrednio do powierzchni Ziemi. Takie zdarzenia są jednak bardzo rzadkie. Energetyczne cząstki generowane przez KWM są bardzo szybkie i trudne przewidzieć ich pojawianie się. Stanowią one najbardziej niebezpieczny element aktywności słonecznej.

Po lewej stronie obraz korony bez koronalnego wyrzutu materii. Po prawej stronie typowy wyrzut koronalny, zarejestrowany przez koronograf LASCO umieszczony na satelicie SOHO.Wyraźnie widać trzy charakterystyczne struktury: front, wnękę i jądro.

Drugim czynnikiem wpływającym na pogodę kosmiczną są fale uderzeniowe. Docierają one w okolice Ziemi później niż cząstki przyspieszane przez nie w bliskości Słońca. W zależności od początkowej prędkości potrzebują na to od 1 do 4 dni. Co prawda ich przybycie możemy dość dokładnie przewidzieć, ale za to ich oddziaływanie na naszą planetę jest silniejsze. Jeżeli pole magnetyczne unoszone przez KWM ma kierunek przeciwny do ziemskiego pola magnetycznego, to wówczas fale te silnie oddziałują z ziemską magnetosferą. Ziemskie pole magnetyczne anihiluje (anihilacja – oddziaływanie cząstki z odpowiadającą jej antycząstką, podczas którego cząstka i antycząstka zostają zamienione na fotony, w tym przypadku nie anihilują cząstki, ale pola magnetyczne – przyp. red.) z polem unoszonym przez KWM. Magnetosfera traci swoje ochronne działanie, „otwiera się” i energetyczne cząstki mogą swobodnie do niej wnikać. Strumienie cząstek generują prądy elektryczne zakłócające ziemskie pole magnetyczne. Potocznie nazywamy to zjawisko burzą magnetyczną. Naukowcy obserwujący Słońce obliczyli, że średnio w ciągu miesiąca możemy spodziewać się jednej silnej burzy magnetycznej. Jedynym,  przyjemnym przejawem burz magnetycznych są piękne kolorowe zorze pojawiające się w okolicach ziemskich biegunów magnetycznych. W okolicach biegunów w najmniejszym stopniu blokowany jest dostęp energetycznych cząstek do powierzchni ziemi. Szybkie cząstki, przenikając  do atmosfery ziemskiej, wzbudzają do świecenia głównie atomy tlenu i azotu.

Mówi się także o wpływie aktywności Słońca na klimat. Niektóre z badań obarczają je wystąpieniem tzw. małej epoki lodowcowej (XVI-XIX wiek, na półkuli północnej temperatury spadły średnio o ok. 1 stopień Celsjusza – co już wpłynęło na większy zasięg lodowców, dłuższe zimy itp.). To ochłodzenie było skorelowane z obniżeniem aktywności magnetycznej Słońca.

Innym problemem powodowanym przez burze magnetyczne jest zagrożenie awariami zasilania. W marcu 1989 roku, po silnym wyrzucie materii na Słońcu, nastąpiło znaczne przeciążenie sieci energetycznej w kanadyjskim Quebecu. Dostawy prądu musiały zostać zablokowane na 9 godzin.

Koronografy w akcji


Koronalne wyrzuty materii są zjawiskiem odkrytym niedawno. Ich pierwsza detekcja miała miejsce w 1971 roku. Korona słoneczna (najwyższa warstwa atmosfery słonecznej) jest bardzo rzadka i jej jasność w świetle widzialnym jest dużo mniejsza od jasności fotosfery (widoczna część atmosfery słonecznej). Koronę słoneczną możemy zatem jedynie obserwować podczas całkowitych zaćmień Słońca lub przy pomocy specjalnych teleskopów (koronografów) z przysłonami zasłaniającymi jasną tarczę słoneczną. Wyrzuty koronalne są trudne do obserwacji, dlatego mogą być obserwowane przez teleskopy umieszczone powyżej ziemskiej atmosfery.

Prawdziwy przełom w badaniu KWM dokonał się po wysłaniu misji SOHO (Solar and Heliospheric Observatory). Satelita ten obserwuje Słońce już od 20 lat. Na jego pokładzie pracują obecnie dwa koronografy pozwalające obserwować koronę słoneczną z różnych odległości. W okresie swojej pracy koronografy te zarejestrowały około 30 tysięcy wyrzutów. Wszystkie one zostały zbadane, scharakteryzowane i umieszczone w dostępnym w internecie  SOHO/LASCO katalogu, przy tworzeniu którego miałem przyjemność pracować. Za jego pomocą udało się ustalić, że w okresie maksimum słonecznej aktywności obserwujemy nawet dziesięć silnych wyrzutów w ciągu dnia. W okresie minimum słonecznej aktywności obserwuje się kilka silnych wyrzutów na tydzień.

Źródło: www.nauka.uj.edu.pl



Drukuj PDF
wstecz Podziel się ze znajomymi

Informacje dnia: Potrzebne regulacje dot. norm i zasad hałasu turbin wiatrowych Naukowcy zbadali, jakie obrazy zapadają częściej w pamięć Człowiek poprzez emisję gazów spowodował ocieplenie Sztuczna inteligencja diagnozuje spektrum autyzmu Autonomiczne hulajnogi elektryczne Wydano pierwszy atlas geologiczny Księżyca Potrzebne regulacje dot. norm i zasad hałasu turbin wiatrowych Naukowcy zbadali, jakie obrazy zapadają częściej w pamięć Człowiek poprzez emisję gazów spowodował ocieplenie Sztuczna inteligencja diagnozuje spektrum autyzmu Autonomiczne hulajnogi elektryczne Wydano pierwszy atlas geologiczny Księżyca Potrzebne regulacje dot. norm i zasad hałasu turbin wiatrowych Naukowcy zbadali, jakie obrazy zapadają częściej w pamięć Człowiek poprzez emisję gazów spowodował ocieplenie Sztuczna inteligencja diagnozuje spektrum autyzmu Autonomiczne hulajnogi elektryczne Wydano pierwszy atlas geologiczny Księżyca

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje