Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Horyzont
Strona główna Nowe technologie
Dodatkowy u góry

Szybsze procesory dzięki ferroelektrykom?

Inżynierowie z University of California, Berkeley, zaprezentowali sposób na zmniejszenie minimalnego napięcia koniecznego do przechowywania ładunku w kondensatorze.Im szybciej działa komputer, tym cieplejszy się staje. Tak więc kluczowym problemem w produkcji szybszych mikroprocesorów jest spowodowanie, by ich podstawowy element, tranzystor, był bardziej energooszczędny - mówi Asif Khan, jeden z autorów odkrycia. Niestetytranzystory nie stają się na tyle energooszczędne, by dotrzymać kroku zapotrzebowaniu na coraz większe moce obliczeniowe, co prowadzi do zwiększenia poboru mocy przez mikroprocesory - dodaje uczony.

W laboratorium Sayeefa Salahuddina, w którym jest zatrudniony Khan, od 2008 roku trwają prace nad zwiększeniem wydajności tranzystorów. W końcu, dzięki wykorzystaniu ferroelektryków, udało się osiągnąć założony cel.

Ferroelektryki przechowują zarówno ładunki dodatnie jak i ujemne. Co więcej, składują je nawet po odłączeniu napięcia. Ponadto ich bardzo przydatną cechą jest możliwość zmiany polaryzacji elektrycznej za pomocą zewnętrznego pola elektrycznego.

Naukowcy z Berkeley udowodnili, że w kondensatorze, w którym ferroelektryk połączono z dielektrykiem, można zwiększyć ładunek zgromadzony dla napięcia o konkretnej wartości.

To prototypowe prace, które pozwolą nam wykorzystać zjawisko ujemnej pojemności, by zmniejszyć napięcie wymagane przez współczesne tranzystory - mówi Salahuddin, który już będąc studentem zastanawiał się nad zjawiskiem ujemnej pojemności w ferroelektrykach. Jeśli wykorzystamy to zjawisko do stworzenia niskonapięciowego tranzystora bez jednoczesnego zmniejszania jego wydajności i szybkości pracy, możemy zmienić cały przemysł komputerowy - dodaje uczony.

Naukowcy połączyli ferroelektryk cyrkonian-tytanian ołowiu (PZT) z dielektrykiem tytanianem strontu (STO). Następnie do PZT-STO przyłożyli napięcie elektryczne i porównali jego pojemność elektryczną do pojemności samego STO.

W strukturze z ferroelektrykiem zaobserwowaliśmy dwukrotne zwiększenie różnicy potencjałów elektrycznych przy tym samym przyłożonym napięciu, a różnica ta może być jeszcze większa - mówią uczeni.

Zwiększająca się gęstość upakowania tranzystorów i zmniejszające się ich rozmiary nie pociągnęły za sobą odpowiedniego spadku wymagań co do poboru prądu potrzebnego do pracy. W temperaturze pokojowej do 10-krotnego zwiększenia ilości prądu przepływającego przez tranzystor wymagane jest napięcie co najmniej 60 miliwoltów. Jako, że różnica pomiędzy stanami 0 i 1 w tranzystorze musi być duża, to do sterowania pracą tranzystora konieczne jest przyłożenie napięcia nie mniejszego niż mniej więcej 1 wolt.

To wąskie gardło. Prędkość taktowania procesorów nie ulega zmianie od 2005 roku i coraz trudniej jest dalej zmniejszać tranzystory - mówi Khan. A im mniejsze podzespoły, tym trudniej je schłodzić.

Salahuddin i jego zespół proponują dodać do architektury tranzystorów ferroelektryk, dzięki któremu można będzie uzyskać większy ładunek z niższego napięcia. Takie tranzystory będą wydzielały mniej ciepła, więc łatwiej będzie je schłodzić.

Zdaniem uczonych warto też przyjrzeć się ferroelektrykom pod kątem ich zastosowania w układach DRAM, superkondensatorach czy innych urządzeniach do przechowywania energii.


Autor: Mariusz Błoński
Źródło: http://newscenter.berkeley.edu
Fot.:http://kopalniawiedzy.pl/


Tagi: inżynier, kondensator, napięcie elektryczne, ferroelektryki, laboratorium
Drukuj PDF
wstecz Podziel się ze znajomymi

znajdz nas na fcb
Informacje dnia: O nadprzewodnictwie w badaniach doktoranta PŁ w CERN Pierwsze na świecie wyścigi.... nanosamochodów Larwy mola woskowego trawią...plastik Jadłospis zapisany w genach Wylądować na planecie Planica Pięć medali w Stuttgarcie dla polskich naukowców O nadprzewodnictwie w badaniach doktoranta PŁ w CERN Pierwsze na świecie wyścigi.... nanosamochodów Larwy mola woskowego trawią...plastik Jadłospis zapisany w genach Wylądować na planecie Planica Pięć medali w Stuttgarcie dla polskich naukowców O nadprzewodnictwie w badaniach doktoranta PŁ w CERN Pierwsze na świecie wyścigi.... nanosamochodów Larwy mola woskowego trawią...plastik Jadłospis zapisany w genach Wylądować na planecie Planica Pięć medali w Stuttgarcie dla polskich naukowców

Partnerzy

GoldenLine Fundacja Kobiety Nauki Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 Mlodym Okiem Nanotechnologia Lodz Genomica SYMBIOZA 2017 Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab