Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Reklama1
Strona główna Artykuły

Chromatografia wykorzystująca hydrofobowe właściwości cząsteczek: chromatografia fazy odwróconej cz. II

Zarówno paracetamol, teofilina jak i salicylany moga być w łatwy sposób ekstrahowane z osocza, dzięki czmu możliwe jest określenie ich stężenia w osoczu. Ekstrakcję tych leków prowadzi się przy zastosowaniu mieszaniny chlorek metylenu/propanol  występujących w stosunku 9:1.

Następnie, tak wyekstrahowany materiał rozdziela się metodą fazy odwróconej z zastosowanej kolumny C18 w izokratycznym systemie HPLC, który wyposażony jest w detektor UV oraz integrator [1].  Identyfikację np. salicylanów dokonuje się na podstawie wyznaczonego czasu retencji, z kolei określenie ilości wyekstrahowanego leku dokonuje się na podstawie zastosowania wewnętrznego standardu. W przypadku salicylanów standardem jest 8-C1-teofilina [2].

Analityczne metody oznaczania leków w płynach fizjologicznych

Wykonanie:   

Materiał do badań: Jako materiał  należy wykorzystać osocze ludzkie wolne od leków, oraz osocze pochodzące od osoby chorej – musi to być osoba przyjmująca analizowane leki!

1)    Przygotowanie próbek do chromatografii: ekstrakcja leków

Na początku należy przygotować mieszaninę ekstrakcyjną wg przepisu: chlorek metylenu/2-propanol w stosunku 9:1, z dodatkiem wewnętrznego standardu (8-C1-tefilina) o stężeniu 7µM. Z kontrolnego oscza, tj. wolnego od leków przygotować osocze wzorcowe w objętości 1 ml, zawierające: paracetamol (w stężeniu 0,4 mM) , teofilinę (75µM) oraz salicylan ( 1 mM). Równolegle należy prowadzić ekstrakcję trzech próbek , tj:

1)    Osocza wolnego od leków
2)    Osocza wzorcowego oraz
3)    Osocza, które zawiera nieznaną ilośc leków.

Do 0,5 ml osocza dodać 0,5 ml 1M roztworu HCl, a także 5 ml mieszaniny ekstrakcyjnej . Całość mieszać przez 1 minutę, po czym odwirować przy 10 000xg w ciągu 10 minut. Po wirowaniu, zebrać 3 ml powstałego supernatantu, w której znajdować się będą rozpuszczalniki organiczne, supernatant przenieść do szklanej probówki, po czym odparować w łaźni wodnej w temp. 50C (w atmosferze azotu). Powstały osad rozpuścić w eluencie (13% metanol-75% CH3COOH -0,02M CH3COONa) w obj. 100µL i zastosować do rozdziału na kolumnie C18(ODS2, 5µm , 4x100 mm). Zastosowana ekstrakcja charakteryzuje się dużą wydajnością, która dla badanych leków przekracza 90% [1].

1)    Analiza zawartości leków w próbkach


Kolumnę C18  należy zrównoważyć eluentem (13% metanol-75% CH3COOH -0,02M CH3COONa) , prędkość przepływu ustalić na 1 ml/min, zaś w detektorze UV wybrać długość fali równą λ=280 nm. Do pętli nanieść 10 µl analizowanej próbki, a po ustaleniu się warunków nastrzyknąć próbkę na kolumnę. Cały rozdział chromatograficzny prowadzić w czasie 20 minut, po kolei analizując przygotowane próbki.

W próbce, która jest wolna od leków powinien pojawić się tylko wewnętrzny standard czyli 8-Cl-teofilina . Czas retencji dla tej próbki to ok. 19 min.

W próbce wzorcowej powinny pojawić się dokładnie 3 szczyty chromatograficzne, które odpowiadają:

- paracetamolowi (ok. 4 min)
- teofilinie (ok. 7 min)
- oraz salicylanowi (ok. 8 min).

Wewnętrzny standard powinien pojawić się dokładnie w tym samym miejscu co w osoczu, które było wolne od leków, z kolei w próbie badanej ( charakteryzującej się nie znaną zawartością leków), szczyty chromatograficzne odpowiadające poszczególnym lekom powinny pojawiać się przy tych samych czasach retencji co w osoczu wzorcowym. Należy mieć jednak na uwadze, że szczyty te moga być różnej wysokości w porównaniu do osocza wzorcowego. Wysokość każdego szczytu chromatogarficznego zależna jest od stężenia danego leku w osoczu. W zakresie badanych stężeń oraz mierzonych przez detektor zmian gęstości optycznej przepływającej cieczy, można przyjąć liniową zależność mierzonej gęstości optycznej od stężenia każdego z leków [1].



Zdjęcie: Analiza salicylanów w osoczu krwi ludzkiej, [2].

Pierwszy z chromatogramów przedstawia rozdział materiału zawierającego jedynie wewnętrzny standard (8-Cl-teofilina). Środkowy chromatogram reperezentuje rozdział osocza kontrolnego (wzorzec o znanej ilości salicylanu). Trzeci chromatogram prezentuje separację różnych substancji z osocza pacjenta [2].

Korzystając z poniższego wzoru możliwe jest policzenie stężenia (c) każdego z analizowanych leków w próbie badanej, gdzie uwzględnia się wartości absorbancji uzyskane dla wewnętrznego standardu:

Cleku = C wzorca leku x (A leku próby /A leku wzorca) x (A standardu wzorca /A standardu próby)

Gdzie:

C leku
  i C wzorca leku – stężenia badanego leku, odpowiednio w osoczu badanym i wzorcowym;

A leku próby 
A leku wzorca – zmierzone wartości maksymalnej absorbancji w szczycie badanego leku, odpowiednio w próbie badanej i wzorcowej;

A standardu wzorca i A standardu próby – zmierzone wartości maksymalnej absorbancji w szczycie odpowiadającym standardowi wewnętrznemu, odpowiednio w próbie wzorcowej i badanej [1].

Po zakończeniu rozdziału chromatograficznego i oznaczeń, kolumnę należy przemyć 20% metanolem w objętości 30 ml i przechowywać kolumnę w temperaturze pokojowej. Kolumna musi być przechowywana szczelnie zamknięta ( z obu końców) lub podłączona do systemu HPLC [1], [2].

Zastosowanie chromatografii cieczowej w układzie faz odwróconych do rozdzielania i oznaczania naftochinonów.

Naftochinony to pochodne naftalenu. Zazwyczaj są to:  1,4-naftochinony albo 1,4-naftohydrochinony- często występujące  z wbudowaną grupą fenolową. Związki te występują u bakterii, grzybów i roślin wyższych. Ich rozpowszechnienie w świecie roślinnym jest dość ograniczone, choć czasami stanowią składniki czynne niektórych surowców roślinnych [3], [15]. 


Do najważniejszych barwników naftochinonowych należą: juglon, plumbagina, droseron czy szikonina. Pochodne naftochinonu wykazują wielokierunkową aktywność farmakologiczną, zaś szczególnie dużo leczniczych właściwości posiada właśnie szikonina. Przeciwzapalne właściwości szikoniny, oraz przyspieszające gojenie ran znane są już od dawna i wykorzystywane do leczenia ciężkich owrzodzeń oraz oparzeń skóry, a także egzemy czy odleżyn [4]. Jak wykazały badania,  przeciwzapalne działanie szikoniny (oraz jej pochodnych)  związane jest wieloma mechanizmami,w tym  m.in. z hamowaniem biosyntezy leukotrienu B4 i kwasu 5-hydroksyeikozatetraenowego, które zaliczane są do mediatorów stanu zapalnego [5]. Ponadto, zmniejszeniem produkcji TNF-α, interleukiny 1-b i tlenku azotu, a także inhibicją cyklooksygenazy-2 [6], [15]. 

Szikonina i jej pochodne wykazują również aktywność antybakteryjną. Działanie takie odnosi się zarówno do bakterii Gram-dodatnich (G+), np.  Staphylococcus aureus [7], [8],  jak również bakterii Gram-ujemnych(G-) w tym Escherichia coli i Pseudomonas aeruginosa (Karyagina et al., 2001). Inny barwnik: plumbagina-  wykazuje działanie przeciwko Helicobacter pylori [9].

Jak udowodniono, działanie przeciwdrobnoustrojowe naftochinonów nie ogranicza się tylko do bakterii i grzybów. Związki te posiadają także aktywność przeciwwirusową, dzięki czemu mogą być one stosowane np. przeciwko wirusowi zapalenia wątroby HCV [10], z kolei wykazano, że szikonina posiada działanie supresyjne na wirusa HIV-1 [11]. Ponadto, w wielu doniesieniach udowodniono przeciwnowotworowe właściwości szikoniny oraz jej pochodnych. Działanie to wynika z kilku mechanizmów, w tym m.in. z hamowania proliferacji komórek nowotworowych [12],  inhibicji DNA topoizomerazy-I [13]  czy indukcji apoptozy [14], [15]. 

Najczęściej do rozdzielania związków należących do grupy naftochinonów z wykorzystaniem chromatografii cienkowarstwoej w układzie  faz odwróconych (tzw. chromatografia RP-TLC), stosuje się płytki z fazą stacjonarną (C18). Jako eluent wykorzystuje się wodne rpztwory metanolu bądź kwasu mrówkowego. Detekcję pzreprowadza się w świetle UV.

W przypadku zastosowania wysokosprawnej chromatografii cieczowej w odwróconym układzie faz , jako fazę stacjonarną stosuje się żel krzemionkowy, który poddawany jest modyfikacji z wykorzystaniem grup oktadecylowych. W większości stosowanych metodyk rozdzielania związków wykorzystuje się elucję izoakratyczną , gdzie eluentem jest wodny roztwór acetonitrylu lub metanolu, z dodatkiem kwasu octowego bądź mrówkowego.

Do detekcji związków należących do grupy naftochinonów powszechnie wykorzystuje się detektory spektrofotometryczne UV-VIS ( z matrycą fotodiodową – DAD, lub z detektorem fluorescencyjnym).

Zastosowanie elucji izokratycznej pozwala na łatwiejsze odzyskanie składników eluentu, a ponadto wpływa na bardzo ważny aspekt całej metodyki: czyni zaprojektowany proces rozdzielczy bardziej ekonomicznym [16].

Autor: Lidia Koperwas


Literatura:

[1]. Kłyszejko-Stefanowicz L, 2003. Ćwiczenia z biochemii. Wydawnictwo Naukowe PWN, 2003, s. 172 – 176
[2]. http://www.biofizyka.p.lodz.pl/ch7.pdf
[3]. Kohlmünzer S. (2007). Farmakognozja. Podręcznik dla studentów farmacji. Wyd. V unowocześnione. PZWL, Warszawa: 150-198, 253-277, 377-379, 531
[4]. Papageorgiou V.P., Assimpoulou A.N., Couladouros E.A., Hepworth D., Nicolaiu K.C. (1999). The chemistry and biology of alkannin, shikonin and related naphthazarin natural products. Angewandte Chemie International Editio, 38: 270-300
[5]. Wang W.J., Bai J.Y., Liu D.P., Xue L.M., Zhu X.Y. (1994). The antiinflammatory activity of shikonin and its inhibitory effect on leukotriene B4 biosynthesis. Yaoxue Xuebao, 29: 161-165
[6]. Nam K.N., Son M.-S., Park J.-H., Lee E.H. (2008). Shikonins attenuate microglial inflammatory responses by inhibition of ERK, Akt, and NF-κB: neuroprotective implications. Neuropharmacology, 55 (5): 819825
[7]. Shen C.C., Syu W.J., Li S.Y., Lin C.H., Lee G.H., Sun C.M. (2002). Antimicrobial activities of naphthazarins from Arnebia euchroma. Journal of Natural Products, 65(12): 1857-1862
[8]. Pietrosiuk A., Kędzia B., Hołderna-Kędzia E., Wiedenfeld H., Malinowski M., Furmanowa M. (2003). Antimicrobial activity of naphthoquinones from Lithospermum canescens Lehm. Herba Polonica, 49(3/4): 209-215
[9]. Wang Y.-C., Huang T.-L. (2005). High-performance liquid chromatography for quantification of plumbagin, an anti-Helicobacter pylori compound of Plumbago zeylanica L. Journal of Chromatography A, 1094: 99–104
[10].  Ho T.Y., Wu S.L., Lai I.L., Cheng K.S., Kao S.T., Hsiang C.Y. (2003). An in vitro system combined with an in-house quantitation assay for screening hepatitis C virus inhibitors. Antiviral Research, 58: 199-208
[11]. Chen X., Yang L., Hang N., Turbin J.A., Buckheit R.W., Sterling C., Oppenheim J.J., Howard O.M.Z. (2003a). Shikonin, a component of Chinese herbat medicine, inhibits chemokine receptor function and suppresses Human Immunodeficiency Virus type 1. Antimicrobial Agents and Chemotherapy, 47(9): 2810-2816
[12]. Sankawa U., Otsuka H., Kataoka Y., Iitaka Y., Hoshi A., Kuretani K. (1981). Antitumor activity of shikonin, alkannin and their derivatives. II. X-Ray analysis of cycol-alkannin leucoacetate, tautomeriom of alkannin and cycol-alkannin and antitumor activity of alkannin derivatives. Chemical & Pharmaceutical Bulletin, 29(1): 116-122
[13]. Ahn B.Z., Baik K.U., Kreon G.R., Lim K., Hwang B.D. (1995). Acylshikonin analogues: synthesis and inhibition of DNA topoisomerase-I. Journal of Medicinal Chemistry, 38: 1044-1047
[14]. Gao D., Hiromura M., Yasui H., Samurai H. (2002). Direct reaction between shikonin and thiols induces apoptosis in HL60 cells. Biological and Pharmaceutical Bulletin, 25(7): 827-832
[15].  http://biuletynfarmacji.wum.edu.pl/1101Bolonkowska/Bolonkowska.html
[16]. Boczkaj G., Jaszczołt G., Leman A., Skrzypczak A., Królicka A., Kamińska M.,2011. Zastosowanie cgromatografii cieczowej w odwróconym układzie faz (RP-LC) w rozdzielaniu i oznaczaniu polifenoli i naftochinonów w materiałąch roślinnych. Camera Separatoria (previously Postępy Chromatografii), Volume 3, Numer 1/June 2011 , 87-99. http://dach.ich.uph.edu.pl/cs/download/cs_vol3_no1/_cs_2011_87-100.pdf


 






Tagi: teofilina, paracetamol, salicylany, ekstrakcja, chromatografia fazy odwróconej, naftochinony, lab, laboratorium
Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje



znajdz nas na fcb
Informacje dnia: Antykoncepcja w żelu dla... mężczyzn Już wkrótce medyczna marihuana GMO? Epigenetyka w rozwoju nowotworu W przyszłym roku pierwszy turystyczny lot wokół Księżyca II edycja projektu „Warsaw Science Talks” Przepis na ultrakrótkie impulsy laserowe Antykoncepcja w żelu dla... mężczyzn Już wkrótce medyczna marihuana GMO? Epigenetyka w rozwoju nowotworu W przyszłym roku pierwszy turystyczny lot wokół Księżyca II edycja projektu „Warsaw Science Talks” Przepis na ultrakrótkie impulsy laserowe Antykoncepcja w żelu dla... mężczyzn Już wkrótce medyczna marihuana GMO? Epigenetyka w rozwoju nowotworu W przyszłym roku pierwszy turystyczny lot wokół Księżyca II edycja projektu „Warsaw Science Talks” Przepis na ultrakrótkie impulsy laserowe

Partnerzy

GoldenLine Fundacja Kobiety Nauki Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 Mlodym Okiem Nanotechnologia Lodz Genomica SYMBIOZA 2017 Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab