Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Dygestorium
Strona główna Artykuły
Dodatkowy u góry
Labro na dole

Zastosowanie kropek kwantowych w biologii i medycynie

Kropki kwantowe (ang. quantum dots - QD) są to półprzewodniko­we nanokryształy o wielkości od 2-10 nm. QD są bardzo specyficznym rodzajem substancji  o właściwościach pośrednich pomiędzy półprzewodnikami i cząstkami kwantowymi. Ograniczona liczba atomów oraz średnica kilku nanometrów daje kropkom kwantowym wyjątkowe właściwości absorpcji i emisji promieniowania, które wynikają z występowania efektu ograniczenia kwantowego (ang. quantum confinemen effect). Oznacza to, że po wzbudzeniu energia emitowanych przez nie fotonów zależeć będzie od składu kryształu i jego wielkości. Podobnie jak półprzewodniki kropki kwantowe pochłaniają fotony światła o takiej energii, która daje możliwość przeniesienia elektronów z poziomu niewzbudzonego na jeden z wyższych dostępnych poziomów energetycznych. Inaczej zachodzi proces emisji, gdyż długość fali emitowanego przez nie światła zależy od wielkości kropki. Stąd też mając jeden półprzewodzący materiał możemy otrzymać znaczniki mające różne kolory, stanowiące charakterystyczną cechę kropek kwantowych [1].

Nanocząsteczki o małej średnicy jądra (2 nm) charakteryzują się fluorescencją przy długości fali odpowiadającej światłu niebieskiemu, a na­wet promieniowaniu ultrafioletowemu (UV). Gdy wzrasta średnica jądra kropki kwantowej, rośnie długość fali emitowanego promieniowania przez cały zakres światła widzialnego, aż po promieniowanie podczerwo­ne (IR). Modyfikując skład i dobierając wielkości nanokryształów uzyskuje się fluorescencję w pełnym zakresie widma od ultrafio­letu (UV) po podczerwień (IR) (Rys. 1) [2].

W celu otrzymywania kropek kwantowych wykorzystywane są różne związki pierwiastków grupy II oraz IV, na przykład: CdSe, CdTe, CdS1CdHg, ZnS, a także grupy III i V, na przykład: InAs, InP, GaN, GaAs [2]. W mikroskopii fluorescencyjnej najczęściej wykorzystywane są związki pierwiastków składające się z selenku kadmu pokryte warstwą siarczku cynku (CdSe/ZnS), o zakresie emisji 450-650 nm i z tellurku kadmu (CdTe) mające  zakres emisji 500-750 nm [1].



Rys. 1. Zakresy emisji promieniowania przez kropki kwantowe wykonane z różnych związków.

 

Promieniowanie może być absorbowane przez kropki kwantowe w szerokim za­kresie widma, natomiast  ich molowy współczynnik absorpcji wzrasta w kierunku promieniowania UV [2]. Dzięki temu można dokonać wzbudzenia wielu rodzajów kropek przy wykorzystaniu jednego źródła światła, gdyż nie ma wymogów stosowania promieniowania wzbudzającego o ściśle określonej długości fali. Z kolei profil emisji fluorescencji kropek kwantowych jest wąski i posiada małą wartość sze­rokości połówkowej (FWHM 125 nm). Umożliwia to równoczesne wykorzystywanie wielu znaczników mających różne kolory bez obawy o nakładanie się ich sygnałów. Nanokryształy mogą być wielokrotnie wzbudzane bez zauważalnego spadku ich fluore­scjencji, gdyż mają wysoką kwantową wydajność fluorescencji (ang.quantum yield), a także długi czas emisji promieniowania (10-100 ns). Poza tym ich fluorescencja wykazuje dużą odporność na fotoblaknięcie (ang. photobleaching) [1].

Na początku lat 80. po raz pierwszy otrzymano struktury nazywane kropkami kwantowymi, ich nazwę (ang. quan­tum dots) zaproponował w 1988 r. Mark Reed. Ten dynamiczny rozwój technologiczny wpłynął na ogromny postęp w zakresie metodyki otrzymywania oraz zastosowania kropek kwantowych w wielu dziedzinach. Nagły wzrost badań w zakresie ich zastosowania w biologii oraz medycynie zaczął się od 1998 r. Opracowano wówczas syntezę rozpuszczalnych w wodzie kro­pek kwantowych z przyłączonymi do ich powierzchni cząsteczkami biolo­gicznymi. Ze względu na swoje właściwości, kropki kwantowe stanowią nową klasą znaczników, które wykorzystuje się w teragnostyce oraz w diagnostyce obrazowej [1].

 

Otrzymywanie kropek kwantowych

W jednym ze sposobów wytwarzania kropek kwantowych wykorzystuje się reakcję chemiczną pomiędzy jonami metalu na przykład kadmu i cząsteczkami mogącymi oddawać jony selenu, w  wyniku czego powstaje selenek kadmu. Trudność tej metody polega na zapobieganiu zlepiania się małych kryształków przy ich wzroście do żądanych rozmiarów. Aby odizolować od siebie rosnące kryształki reakcja jest przeprowadzana w obecności czynnika powierzchniowo czynnego, czyli cząsteczek związków organicznych, które  pokrywają powierzchnię każdego z rosnących kryształów. Cząsteczki te zapobiegają zrastaniu się kryształków, a także regulują szybkość ich wzrostu. Różne stężenia cząsteczek związków organicznych w roztworze mogą w pewnym stopniu kontrolować kształty kryształków. Otrzymywanie kropek kwantowych o jednorodnej strukturze oraz identycznych rozmiarach jest bardzo istotne, ponieważ rozmiary kropek decydują o ich własnościach optycznych, magnetycznych i elektrycznych. Zmiana czasu trwania reakcji i zastosowanie innych związków organicznych decydują o rozmiarze cząstek. Gdy nanocząstka jest niewielka, pokrycie jej powierzchni przez cząstki związków organicznych jest luźne, co umożliwia jej dalszy wzrost. Wraz ze wzrostem cząstki zacieśnia się pokrycie jej powierzchni. Istnieje pewna optymalna wielkość cząstki, która zapewnia najgęstsze ułożenie cząsteczek związków organicznych pokrywających powierzchnię, gwarantująca  stabilizację powierzchni nanokryształków. Takie nanocząstki selenku kadmu są pierwszymi komercyjnymi produktami nanonauki [3].

 Aby kropki kwantowe mogły być stosowane jako znaczniki fluorescencyjne mu­szą posiadać bardzo dobrą jakość, to znaczy powinny mieć wysoką monodyspersyjność i dużą kwantową wydajność fluo­rescencji. Monodyspersyjność świadczy o tym, że wszystkie kropki w danej próbce posiadają jednakową wielkość, co daje pewność otrzymania wąskiego pasma emisji fluorescencji. Monodyspersyjność i kwantowa wydajność fluorescencji zależą głównie od zastosowanej metody syntezy nanokryształów. W przypadku ogólnie używanych kropek kwantowych CdSe/ZnS, wykorzystuje się syntezę opartą na pirolitycznym rozkładzie metaloorganicznych prekursorów w mieszaninie organicznych rozpuszczalników koordynujących. Są nimi TOPO - tlenek trioktylofosfiny [(C8H17)3PO] i TOP - trioktylofosfina [(C8H17)3P]. Użycie tych rozpuszczalników daje pewność jednorodnej nukleacji w całej objętości reak­cji, nie dopuszcza do agregacji tworzących się nanokryształów, jak również pozwala kon­trolować kinetykę ich wzrostu [3]. Jako prekursory zawierające atomy budujące jądro kropki stosowane są dimetylokadm (CdMe2) oraz selenek trioktylofosfiny [(C8H17)3PSe]. Synteza kropek kwantowych jest prowa­dzona dwuetapowo, w pierwszym etapie otrzymywane są kuliste jądra, a drugi polega na ich pasywacji warstwą półprzewodnika o szerszym paśmie wzbronionym, na przykład ZnS. W takiej reakcji prekursorami zewnętrz­nej warstwy może być między innymi siarczek bis(trimetylosilylu) [(TMS)2S] i dietylocynk (ZnEt2). Wzrost wydajności fluorescencji powoduje pasywacja jądra kropki kwantowej. Po syntezie powierzchnia kropek kwan­towych jest pokryta hydrofobową warstwą TOPO/TOP. Aby otrzymać kropki kwantowe stosowane jako sondy fluorescencyjne w układach biologicznych trzeba zmodyfikować ich powierzchnię, tak aby mogły być rozpuszczalne w roztworach wodnych [4].

 

  • Sprzęganie kropek kwantowych z cząsteczkami biologicznymi

Proces, który polega na przyłączaniu cząsteczek aktywnych do po­wierzchni kropek kwantowych, jest określany jako biokoniugacja bądź biosprzęganie. Warunkuje on zastosowanie sond fluorescen­cyjnych. Kwasy nukle­inowe (np. siRNA), jak również różnego rodzaju białka oraz peptydy (np. przeciwcia­ła), mogą być cząsteczkami przyłączanymi. Do sprzęgania na ogół używa się cząsteczek łącznikowych (ang. cross-linkers) bądź też  biocząsteczki przyłącza się kowalencyjnie lub za pośrednic­twem oddziaływań elektrostatycznych bezpośrednio do powierzchni kropki kwantowej [5].

Metoda polegająca na wykorzystaniu małych cząsteczek łącznikowych, łączy  grupy funkcyjne kropki kwantowej z koniugowanymi biocząsteczkami. Cząsteczki łącznikowe powinny two­rzyć wiązania kowalencyjne z grupami aminowymi, karboksylowymi oraz tiolowymi. Najczęściej stosowanym łącznikiem dla grup –NH2-COOH jest EDC: l-etylo-3-[3-(dimetyloamino) propylo]karbodiimid. Jest to specyficzny rodzaj łącznika, gdyż osta­tecznie sam nie zostaje wbudowany pomiędzy cząsteczki, które łączą się wiązaniem amidowym [5].

Bezpośrednio do powierzchni kro­pek kwantowych, są przyłączane białka albo peptydy głównie z wykorzystaniem powinowactwa znacznika polihistydynowego do atomów cynku lub  innego metalu na powierzch­ni nanokryształu, bądź przez tworzenie wiązań pomiędzy atomami siarki na powierzchni kropki kwantowej a grupami tiolowymi reszt cysterno­wych koniugowanego polipeptydu. Przyłączenie peptydów do po­wierzchni nanokryształu zwiększa rozpuszczalność kropek kwantowych w roztworach wodnych, jak również wprowadza na powierzch­nię grupy funkcyjne. Mogą one być wykorzystywane do dalszych mody­fikacji [5].

Kolejna metoda biokoniugacji polega na współoddziaływaniu przeciwnie naładowanych cząsteczek. Po wymianie ligandów na przykładowo DHLA, kropka kwantowa ma ujemnie naładowaną powierzchnię, co skutkuje przyłączaniem się do niej białka o ładunku dodatnim. Takim białkiem jest awidyna, która w swojej budowie ma wiele zasadowych aminokwasów [5]. Pod­stawą do dalszej rozbudowy sondy fluorescencyjnej jest połączenie kropki kwantowej z awidyną. Wykorzystanie właściwości silnego wiązania się biotyny z awidyną bądź streptawidyną, umożliwia przyłączanie do powierzchni kropek kwantowych różnych biotynylowanych cząsteczek funkcjonalnych, na przykład przeciwciał [2].

W procesie sprzęgania biocząsteczek z kropkami kwantowymi, w przygotowywaniu znaczników fluorescencyjnych, pojawiają się pewne ograniczenia oraz problemy. Jednym z nich jest to, że nie można precyzyjnie kontrolować orientacji białek przyłączanych do powierzchni kropki kwantowej. Skutkiem tego jest, że część cząsteczek na powierzchni sondy nie spełnia swojej funkcji albo funkcja ta będzie zaburzona. Inny problem stanowi trudność w dokładnym kontrolowaniu ilości cząsteczek przyłączanych do powierzchni nanokryształu, co doprowadza do ograniczeń przy użyciu sond fluorescencyjnych do testów ilościowych [1].

 

Zastosowanie kropek kwantowych w biologii i medycynie

 

  • Znakowanie komórek

Kropki kwantowe modyfikowane właściwymi ligan­dami mogą mieć zastosowanie w znakowaniu powierzchni komórek i struktur wewnątrzkomórkowych w preparatach utrwalonych, jak również w żywych komórkach. Właściwości kropek kwantowych umożliwiają długotrwałe monitorowanie znakowanego elementu, na przykład receptora. Na dokładne znakowanie struktur wewnątrzkomór­kowych, począwszy od organelli po białka i kwasy nukleinowe pozwalają sondy fluorescencyjne utworzone na bazie nanokryszta­łów [1].

W badaniach biologicznych kropki kwantowe są wykorzystywane do śledzenia dynamiki recyrkulacji receptorów powierzchni błony komórkowej. Precy­zyjność tego badania, wymaga wysokiej specyficzności sond fluorescencyjnych, a także możliwości śledzenia ich na poziomie pojedynczych cząsteczek. Obie te cechy są spełniane przez znaczniki na bazie kropek kwantowych. Na skutek właściwie nieograniczonej możliwości modyfikacji ich powierzchni można dostosować je do wykrywania różnych białek powierzchniowych. Natomiast wskutek charakterystycznego „mrugania" pojedynczych nanokryształów, które ukazuje się przy ciągłym wzbudzaniu fluorescencji, możliwe jest wskazanie pojedynczej cząsteczki. Badanie receptorów erbB/HER może stanowić przykład zastosowania kropek kwanto­wych w tej dziedzinie [4].

Dużym pro­blemem przy znakowaniu elementów wewnątrzkomórkowych jest wprowadzenie kropek kwantowych do komórek. Bez trudu lecz najmniej wydajnie kropki kwantowe można wprowadzić do komórek przez ich pasywne przechodzenie przez błonę komórkową do cytoplazmy. Wydajność transportu kropek kwantowych przez błonę komórkową można zwiększać poprzez dołączenie do ich powierzchni ligandów wiążących się z receptorami powierzchniowymi błony komórkowej. Kropki kwantowe po przejściu przez błonę komórkową na drodze receptorowej bądź w sposób pasywny zamykane są w endosomach, co nie daje im możliwości swobodnego przemieszczania się wewnątrz komórki. Wykluczenie tego problemu następuje poprzez pokrycie powierzchni nanokryształu specjalną powłoką polimerową, która rozrywa endosomy. Kropki kwantowe są także wprowadzane do komórek w sposób mechaniczny - przez mikroiniekcję albo elektroporację. Pozytywny efekt jest uzyskiwany przy mikroiniekcji, strategia ta jednak wyklucza więk­szą skalę badań. W przypadku elektroporacji, kropki kwantowe zwykle ulegają agregacji, a stosunkowo duża część znakowanych komórek umiera. Duże oczekiwania wiąże się z metodą polegającą na dołączaniu do powierzchni sond peptydów pene­trujących błonę komórkową (ang. cell-penetrating peptides). Takimi peptydami są: poliarginina i białko Tat wirusa HIV. Stosowanie odpowiednich peptydów sygnałowych (ang. signal peptides) zapewnia, aby wpro­wadzone do wnętrza komórek kropki kwantowe mogły skutecznie, a także selek­tywnie znakować konkretne organelle. Zapewniają one wybiórczą translokację sond do wybranego kompartymentu komórki [6].

Wiele istotnych informacji dostarcza znakowanie komórek sondami, skonstruowanymi w oparciu o kropki kwantowe oraz ich monitorowanie. Ta technika jest ważna zwłaszcza w przypadku badania embriogenezy, gdyż umożliwia dokładne wskazanie segmentów oraz struktur zarodka wywodzących się z określonych ko­mórek. Duże oczekiwania pokłada się w zastosowaniu kropek kwantowych w onkologii do obserwowania migracji komórek w obrębie zmiany nowotworo­wej i w monitorowaniu przemieszczania komórek przerzutujących. W powyższych zastosowaniach odpowiednie sondy fluorescencyjne muszą posiadać szczególne cechy. Wskazane jest by pozostawały w obszarze wyznakowanej komórki, nie zaburzały jej funkcjonowania oraz aby w trakcie podziału komórko­wego równomiernie rozdzielały się do komórek potomnych. Poza tym sondy fluorecencyjne powinny mieć dużą odporność na fotoblaknięcie, w celu ich monitorowania przez dłuższy czas. Kropki kwantowe znakomicie sprawdzają się w śledzeniu migracji komórek, gdyż wykazują te wszystkie właściwości. Kropki kwantowe znalazły zastosowanie w biologii jako znaczniki białek i kwasów nukleinowych w strukturach tkankowych [6].

  • Nanosensory

Obecnie obiecującą i dynamicznie rozwijającą się dziedziną biotechnologii jest opracowywanie metod otrzymywania nanosensorów. Istotne zastosowanie biosensorów polega na ich wykorzystaniu do wykrywania związ­ków chemicznych, monitorowaniu reakcji na poziomie cząsteczkowym oraz przekazywaniu w sposób ciągły informacji o zmianach stężenia substratów. Kropki kwantowe są idealną bazą do konstruowania biosensorów ze względu na ich właściwości, łatwość wzbudzenia, długi czas fluorescencji i możliwość przyłączania do powierzchni róż­nych cząsteczek [7].

 Biosensory oparte na nanokryształach mają wspólną cechę, jest nią wyko­rzystywanie zjawiska rezonansowego przeniesienia energii wzbudzenia (ang.fluorescence resonance energy transfer - FRET). FRET jest to zjawisko polegające na przeniesieniu energii pomiędzy donorem a akceptorem. Przebieg tego procesu następuje w taki sposób, że wzbudzony donor przekazu­je swoją energię akceptorowi, emitującemu ją w formie fluorescencji. W wyniku zastosowania promieniowania o długości fali wzbudzają­cej jeden z fluoroforów, uzyskuje się emisję z drugiego. Najefektywniej proces transferu energii zachodzi, gdy odległość między dono­rem a akceptorem jest mniejsza niż promień Fóstera, czyli mniej niż 10 nm. Optymalny efekt transferu energii osiąga się, gdy odległość pomiędzy donorem a akceptorem wynosi od 2 do 6 nm. Im większa jest odległość między fluoroforami, tym mniej energii jest przekazywanej przez FRET. Natomiast energia, która nie jest przekazana do akceptora, wprowadzana jest  przez donor w formie fluorescencji. FRET wykorzystuje się w badaniach zmian konformacji białek oraz interakcji między nimi, gdyż znakomicie nadaje się do obserwowania zmian odległości pomiędzy badanymi elementami. Obecnie, są już doświadczalne układy nanosensorów, które wykorzystują kropki kwantowe i umożliwiają wykrywanie na przykład obecności maltozy, aktywności proteaz czy też określo­nych sekwencji DNA [7].

  • Dostarczanie i monitorowanie uwalniania leków

Istotne znaczenie ma opracowywanie właściwych nanocząsteczkowych nośników leków, które umożliwią selektywne dostarczenie leku do patologicz­nych komórek, jak również ochronę aktywnego związku w krwiobiegu przed degradacją. Bardzo dobrym przykładem nanomateriału są kropki kwantowe. Na ich bazie zachodzi możliwość tworzenia układów dostarczających leki i równo­cześnie umożliwiających monitorowanie ich dystrybucji w organizmie. Przy­kładami zastosowania kropek kwantowych jako nośników leków są badania nad dostarczaniem doksorubicyny do komó­rek raka gruczołu krokowego. Kropki kwanto­we są też wykorzystywane jako element układu monitorującego wygaszanie ekspresji genów przy pomocą siRNA [6].

  • Obrazowanie in vivo

Zasadniczym elementem diagnostyki medycznej jest obrazowaniein vivo komórek bądź tkanek patologicznych. Dotychczas wykorzystywane metody obrazowania, nie pozwalają na monitorowanie zmian na poziomie komórkowym. Dlatego też zastosowanie w przyszłości znaczników fluorescencyjnych mogłoby uprecyzyjnić diagnostykę obrazową. W związku z tym należałoby najpierw rozwiązać wiele problemów, pojawiających się przy próbach użycia technik fluorescencyjnych w celu analizy całego organizmu, a które nie występują bądź nie mają ważnego znaczenia w badaniu komórekin vitro. Złożoność struktury narządów powoduje, że większa część promieniowania widzialnego jest pochłaniana bądź rozpraszana, natomiast wzbudzanie sond fluorescencyjnych może przyczyniać się do zwiększania autofluorescencji tła w szerokim zakresie widma. Jednak wykazano, że w bliskiej podczerwieni istnieje przedział promie­niowania (700-900 nm), w którym zakłócenia tła i absorpcja sygnału przez tkanki sąniewielkie, co umożliwia wykonanie analizy o dużej rozdzielczości (ang.deep-tissue optical imaging). Postępowe bada­nia koncentrują się na opracowywaniu nanoczasteczkowych nośników sond fluorescencyjnych, a przede wszystkim sond konstruowanych na bazie kropek kwantowych, które mogą być przydatne w obrazowaniu wnętrza organizmu [8].

Najczęstszą metodą podawania znaczników fluorescencyjnych w obrazowaniu in vivo jest ich wstrzyknięcie dożylne. Konieczność wprowadzenia do organizmu, dożylnym zastrzykiem, zawartych w kropkach kwantowych szkodliwych metali ciężkich lub innych nanomateriałów nasuwa wiele wątpliwości. Wprawdzie ilość tych metali jest znikoma, lecz tempo ich wydalania z organizmu i ich ewentualny wpływ na organizm wymagają dalszych badań. Obserwuje się też szybką eliminację sond z układu krwionośnego w wyniku ich opsonizacji i fagocytozy. Istnieje także możliwość adsorpcji nanosond na powierzchni elementów morfotycznych krwi lub na komórkach śródbłonka. Z kolei u bardzo małych cząstek (~ 9 nm) może dojść do ich bezpośredniego wynaczynienia. Dotychczas udało się znacznie wydłużyć czas przebywania kropek kwantowych w krwiobiegu, pokrywając je powłoką zawierającą glikol polietylenowy (PEG). Mimo wszystko zabieg ten nie wyelimi­nował procesu niespecyficznego usuwania wprowadzonych cząsteczek [2]. Przyłączenie do powierzchni sond odpowiednich ligandów na­prowadzających, przykładowo przeciwciał w połączeniu z powłoką mającą PEG, umożliwia dostarczenie pokaźnej części znaczników fluorescencyj­nych do wybranych komórek. Jeśli chodzi o guzy nowotworo­we, to budowa nowo powstałych okołonowotworowych naczyń krwiono­śnych sprzyja biernemu gromadzeniu się w nich nanocząstek wskutek zwiększonej przepuszczalności tych naczyń (ang. effect EPR) [1].

Kropki kwantowe mogą znaleźć za­stosowanie w obrazowaniu in vivo w zakresie promieniowania widzialnego, jak i bliskiej podczerwieni (NIR). Jest nim wąskie, symetryczne pasmo emisyjne oraz szerokie pasmo absorpcyjne. Pierwsza z tych cech umożliwia oddzielenie sygnału sondy fluorescencyjnej od autofluorescencji tła przy użyciu analizy sygnału z zastosowaniem właściwych algorytmów komputerowych. Z kolei druga właściwość pozwala na dobranie długości fali promieniowania wzbudzającego, tak aby jak najmniej wzbudzić otoczenie kropki kwantowej, co wpływa na zmniejszenie nasilenia zakłóceń. Przykładem wykorzystania obu tych cech w systemie obrazowania może być testowane na modelach zwierzęcych znakowanie komórek raka stercza za pomocą sond z przyłączonym prze­ciwciałem anty-PSMA [9].

Inną metodą redukcji szumów jest użycie samowzbudzających się nanoukładów, które nie wymagają zewnętrznego źródła promieniowania. Nanoukłady są zbudowane z kropki kwantowej wykorzystującej bioluminescencję. Takie sondy są wzbudzane przez zjawisko BRET, którego mechanizm jest analogiczny do FRET, różnicę stanowi jedynie fakt, że w zjawisku BRET ener­gia donora pochodzi z reakcji chemicznej, którą donor katalizuje (bioluminescencja). W BRET donorami są białka emitujące światło, na przykład lucyferyna, powstająca w wyniku utlenienia przez lucyferazę. Dla zapewnienia bezpiecznej analizy, nieuniknione bę­dzie opracowanie systemów wzbudzających składających się z substancji nieimmunogennych, gdyż wprowadzenie do organizmu człowieka lucyferyny bądź lucyferazy może doprowadzić  do odpowiedzi układu immunolo­gicznego [9].

 

Podsumowanie

 

Obecnie kropki kwantowe wykorzystywane są w różnych procesach technologicznych oraz jako nanoznaczniki w technice i medycynie. Ze względu na swoje właściwości posiadają duży potencjał jako znaczniki fluorescencyjne nowej generacji dla sond DNA i przeciwciał monoklonalnych oraz systemów wizualizacji. Charakteryzują się szerokim spektrum absorpcji oraz wąskim emisji, co pozwala na jednoczesne wzbudzenie kilku rodzajów kropek kwantowych przez jedną długość fali. Są też znacznie bardziej stabilnymi i precyzyjnymi znacznikami, niż stosowane dotychczas w diagnostyce medycznej barwniki organiczne. Naukowcy podkreślają, że osiągnięte wyniki to tylko początek wszystkich możliwości metody oznaczania immunofluorescencyjnego z wykorzystaniem kropek kwantowych. Gdy zastosujemy kropki kwantowe jako znaczniki to testy biologiczne na obecność bądź aktywność poszukiwanych substancji są zdecydowanie czulsze, szybsze i elastyczniejsze. Mogą także służyć do optycznego rozpoznawania składu genetycznego badanej próbki przez wytworzenie widmowych kodów paskowych. Tak uzyskane testy genetyczne mogą okazać się pomocne w wykryciu choroby we wczesnym stadium, czyli w momencie łatwiejszym do wyleczenia.

Należy zwrócić uwagę na to, że kropki kwantowe nie są pozbawione wad. Ba­dania potwierdzają ich cytotoksyczny wpływ na komórki, jednak jedno­znaczna ocena krótko i długoterminowej toksyczności kropek kwanto­wych jest na razie trudna. Brak jest dobrze dopracowanych testów analizujących wpływ nanomateriałów na żywe komórki. Dotychczas zgromadzone dane otrzymano z ekspery­mentów prowadzonychin vitro oraz in vivo, w których używano sondy mające różną budowę oraz podawane w różnych dawkach i w różny sposób. Najczęściej  wykorzystywane kropki kwan­towe (CdSe/ZnS, CdTe) zawierają dwuwartościowy kadm, który jest silnie neurotoksyczny. Na poziomie komórkowym wiąże się on z grupami tiolowymi białek i zaburza ich funkcje. Problem toksyczności jonów metali ciężkich można po części zredukować poprzez sto­sowanie dodatkowych powłok, a szczególnie polimerów o dużej masie czą­steczkowej, które pokrywają jądro nanokryształu. Prowadzone są także badania nad syntezą kropek kwantowych z mniej toksycznych metali, na przykład InP/ZnS czy CuInS2/ZnS. Istotny problem z zastosowaniem kropek kwantowychin vivo stanowi sama obecność cząstek tej wielkości w organi­zmie, ponieważ nawet gdy są one całkowicie obojętne che­micznie, mogą odkładać się na powierzchni komórek lub w ich wnętrzu, zaburzając ich funkcjonowanie. Na podstawie obserwacji stwierdzono, że kropki kwantowe o wielkości poniżej 3 nm lokalizują się w jądrze komórkowym, gdzie mogą się niespecyficznie wiązać z histonami bądź nukleosomami. Z kolei przy podaniu dożylnym większa część pochłoniętych kropek gromadzi się w wątrobie, która wykazuje wrażliwość na metale ciężkie. Problem ten może rozwiązać zaprojektowanie sond fluorescencyjnych w taki sposób, aby mogły być szybko wydalane z organizmu. Według przeprowadzonych badań wynika, że wielkość graniczna cząstek, pozwalająca na wydalenie przez nerki wynosi 5,5 nm, a używane w badaniach kropki kwantowe, po pokryciu stabilną powłoka polimerową z dołączonymi peptydami sygnałowymi lub przeciwciałami przekraczają tę wielkość. Nieodzowne jest przygotowanie takich metod otrzymywania sond fluorescencyjnych na bazie kropek kwanto­wych, aby po wykonaniu swojego zadania ele­menty zewnętrzne mogły być odłączone bądź  zdegradowane, a pozostała część miała średnicę mniejszą niż 5,5 nm. Ponadto porównując kropki kwantowe z innymi znacznikami fluorescencyjnymi można zauważyć, że są one drogie i trudniej dostępne, nie można ich umieszczać we wszystkich interesujących elementach komórki, zawierają toksyczne metale ciężkie, a także są izotropowe, w związku z czym spektroskopia polaryzacyjna ma w ich przypadku małe zastosowanie.

Jednak liczba zalet kropek kwantowych znacząco przewyższa ich wady. Mają one możliwość wzbudzania kropek o różnym widmie emisji falą o tej samej długości, w związku z czym aparatura wykorzystywana do badań jest tańsza a eksperyment łatwiejszy. Poza tym kolejnymi zaletami są wąskie pasma emisji, które mogą być łatwo wzbudzane krótszymi falami świetlnymi, duża trwałość przy przechowywaniu oraz oświetleniu, jak również długie czasy zaniku emisji. Przedstawione zalety pozwalają na to, że kropki kwantowe mogą znaleźć szerokie zastosowanie w biologii, biotechnologii i medycynie. W miarę prosty sposób modyfikowania powierzchni kropek kwantowych daje możliwość dostosowy­wania ich do określonych potrzeb i umożliwia niewyczerpane moż­liwości ich zastosowań. Aktualnie na rynku są dostępne kropki kwantowe z przyłączonymi cząsteczkami steptawidyny, co pozwala na modyfi­kacje przez dołączanie biotynylowanych ligandów. W przyszłości znaczniki i biosensory oparte na kropkach kwantowych mogą być niezbędnym narzędziem w mikroskopii fluorescencyjnej w badaniachin vitro iin vivo. Wszystkie te argumenty wskazują na fakt, że odkrycie kropek kwantowych może stać się przełomem w diagnostyce medycznej.


Autor: Katarzyna Czuba

 

Literatura:

 

1.Smith A.M., Duan H., Mohs A.M., Nie S. (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug. Deliv. Rev. 60, 1226-1240.

2.Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A.M. (2007) Bio­logical applications of quantum dots, Biomaterials. 28, 4717-4732.

3.Murray C.B., Norris D.J., Bawendi M.G. (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706-8715.

4.Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. (2005) Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.4, 435-446.

5.Sapsford K.E., Pons T., Medintz I.L., Mattoussi H. (2006) Biosensing with lumines­cent semiconductor quantum dots, Sensors.6, 925-953.

6.Gao X.H., Yezhelyev M.V., Qi L., O'Regan R.M., Nie S.M. (2008) Proton-sponge-coated quantum dots for siRNA delivery and imaging, J. Am. Chem. Soc. 130, 9006-9012.

7.Medintz I.L., Clapp A.R., Mattoussi H., Goldman E.R., Fisher B., Mauro J.M. (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nat. Mater. 2, 630-638.

8.Zrazhevskiy P., Gao X. (2009) Multifunctional quantum dots for personalized medi­cine, Nano Today. 4, 414-428.

9.Gao X.H., Cui Y.Y., Levenson R.M., Chung L.W.K., Nie S.M. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol. 22, 969-976

10.   http://archive.nrc-cnrc.gc.ca/eng/multimedia/quantum-dots.html

 

 


Tagi: kropki kwantowe, znakowanie komórek, nanosensory, FRET, monitorowanie uwalniania leków, obrazowaniein vivo
Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje



Informacje dnia: Targi LABS EPXO 2025 Nanotechnologia w medycynie Uważaj na zimno Indeks sytości i gęstość odżywcza Potrzeba bezpieczeństwa młodzieży nie jest zaspokajana Pierwsze wszczepienie bionicznej trzustki człowiekowi Targi LABS EPXO 2025 Nanotechnologia w medycynie Uważaj na zimno Indeks sytości i gęstość odżywcza Potrzeba bezpieczeństwa młodzieży nie jest zaspokajana Pierwsze wszczepienie bionicznej trzustki człowiekowi Targi LABS EPXO 2025 Nanotechnologia w medycynie Uważaj na zimno Indeks sytości i gęstość odżywcza Potrzeba bezpieczeństwa młodzieży nie jest zaspokajana Pierwsze wszczepienie bionicznej trzustki człowiekowi

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje