Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X
Strona główna Artykuły
Dodatkowy u góryTESTO

Własności zestalonych odpadów wysokoaktywnych

Zestalone ciekłe odpady wysokoaktywne są najlepsza znana formą składowania tych odpadów. Zestalanie tych odpadów może zachodzić wieloma metodami jednak cel jest ten sam: uzyskanie określonych własności zestalonych odpadów np. przewodnictwa cieplnego, trwałości, reaktywności chemicznej i radiacyjnej itp. Jednak zastosowanie różnych metod daje inne rezultaty, a własności końcowe zestalonych wysokoaktywnych odpadów bywają różne.

Wprowadzenie

Główną zaletą przeprowadzania ciekłych odpadów wysokoaktywnych w postacie stałe jest większe bezpieczeństwo ich przechowywania oraz trwalsze zatrzymanie substancji promieniotwórczych w czasie składowania i zmniejszenia ich aktywności do nietoksycznego. Proces ten jest nader ważny w pierwszych 10-ciu latach składowania odpadów wysokoaktywnych, ze względu na generowane przez odpady ciepło oraz szybkie zmiany zachodzące w układzie (zmiany temperatury, radioaktywności itp.).

Pożądane własności produktów zestalania


Najbardziej pożądanymi własnościami odpadów zestalonych są [1]:
  • Dobre przewodnictwo cieplne – efektem dobrego przewodnictwa cieplnego jest wzrost dopuszczalnej ilości składowanych odpadów w pojemniku; umożliwia skrócenie czasu składowania ciekłych odpadów wysokoaktywnych oraz zmniejszenie ich objętości; dane przedstawione na Rysunku 1
  • Niska wymywalność – maksymalne zmniejszenie prawdopodobieństwa wydostania się substancji promieniotwórczych z zestalonych odpadów w wypadku kontaktu z wodą poprzez np. uszkodzony pojemnik.
  • Dobra stabilność chemiczna i radiacyjna
  1. ługowanie – szybkość tego procesu spada wraz ze wzrostem temperatury i stopniem zeszklenia odpadów [2, 3, 4]; ług owalność wzrasta po przejściu szkła w postać mikrokrystaliczną [5, 6, 7];  reaktywność ta maleje z czasem [8]
  2. dewitryfikacja - in. odszklenie, proces zachodzący w szkliwie, prowadzi do jego zmiany w skupienia krystaliczne o słabo rozwiniętych postaciach. O zapoczątkowaniu dewitryfikacji świadczy pojawienie się krystalitów. Przebiega szybko w podwyższonej temperaturze i ciśnieniu, sprzyjających przegrupowaniu atomów i powstaniu ciał krystalicznych o większej gęstości niż szkliwo; przy słabym chłodzeniu odpady mogą przechodzić w postać mikrokrystaliczną [4, 9, 10, 11, 12]; 
  3. powstawanie gazu – jest nieznaczne, gdy temperatura składowania jest zbliżona do temperatury procesu [13]
  4. reakcje utlenienia – ten typ reakcji zachodzi, gdy składowanie odbywa się  temperaturach wyższych od temperatury procesu
  5. rozpad radioaktywny – zmiany radiacyjne w strukturach krystalicznych odpadów, w szczególności tlenków nie do końca zostały poznane; znane są przypadki, że niektóre szkła zmieniają swoją strukturę na mikrokrystaliczną w ciągu kilku do kilkunastu dni składowania w temperaturze 400˚C - 800˚C [13]; odwrotny proces zachodzi w wyprażonych glinianach (przemiana ze struktury bezpostaciowej w krystaliczną); szkła fosforanowe wydzielają ciecze [5, 14]
  • Wytrzymałość mechaniczna – własność ta pożądana jest głównie podczas transportu i ewentualnego uszkodzenia pojemnika; dąży się do otrzymania jak najmniej kruchych odpadów zestalonych
  • Odporność pojemnika na korozję – stwierdzono, iż szybkość procesu korozji nie jest znaczącym parametrem, lecz ważne jest oszacowanie efektów korozji w okresie długoterminowego składowania; dla odpadów ciekłych dane wskazują, iż okres użytkowania pojemników ze stali zlewanej i nierdzewnej jest zależny od utleniania powietrzem zewnętrznych powierzchni kontenerów [5]
  • Minimalna objętość odpadów – zmniejszenie objętości odpadów jest korzystne ze względów ekonomicznych
  • Minimalny koszt całego procesu




Rysunek 1. Efekt odprowadzania ciepła z pojemników z zestalonymi odpadami: 1 – maksymalne ogrzewanie w pojemniku o średnicy 15cm; 2 – wypalanie 45 000 MWd/tonę przy mocy 30MW/tonę; 3 – maksymalne ogrzewanie w pojemniku o średnicy 30cm; 4 – wypalanie 20 000 MWd/tonę

Rzeczywiste własności produktów zestalenia

Postać i własności produktów zestalania jest zależna od metody. Dane te zostały przedstawione w tabeli (Tabela 1). Zestalone odpady metodą wyprażania w pojemniku stanowią bryłę tlenków o umiarkowanej gęstości (ok. 50% to pusta przestrzeń) i niskim przewodnictwie cieplnym. Powstała bryła jest dość miękka i krucha o wysokiej ług owalności w środowisku wodnym.

Odpady zestalone w procesie zestalania rozpyłowego tworzą monolityczny, skało podobny, ale mikrokrystaliczny materiał o dużej gęstości (ok. 10% to pusta przestrzeń) o dobrym przewodnictwie cieplnym, dużej twardości oraz niska ług owalnością w środowisku wodnym.

Odpady zestalone w szkle fosforanowym to homogeniczne szkliwo o dużej gęstości (ok. 5% to pusta przestrzeń), dobrej przewodności cieplnej. Jest materiałem bardzo kruchym. Granulowany, sypki materiał powstaje z wyprażania fluidyzacyjnego, o średniej gęstości (ok. 50% to pusta przestrzeń) i małym przewodnictwie cieplnym, materiał ten jest łatwo ługowalny w wodzie w postaci suchej miękki i kruchy.



Tabela 1. Własności zestalonych odpadów wysokoaktywnych typu Purex

Optymalizacja metod zestalania ma ogromne znaczenie dla bezpieczeństwa składowania materiałów wysokoaktywnych.

Autor: Karolina Wójciuk


Literatura:

[1] Schneider K.J. Zestalanie i usuwanie wysokoaktywnych odpadów promieniotwórczych. Ośrodek Informacji o Energii Atomowej. Seria: Ochrona przed promieniowaniem Nr66 (524) 1972
[2]  Blasewitz A. G. Mendel J E., Schneider K.J., Thompson R.J. Interim Status Report on the Waste Solidification Demonstration Program, USAEC Report BNWL-1083 Battelle-Northwest. 1969
[3]  Barton G.B. Solidification of High Level Walters. Part VI. Mixed Phosphate, Borate, Silicate Melts for Fixation of Purex – Type Wastes. USAEC Report BNWL-373. Battelle – Northwest 1967
[4]  Barton G.B., Weed J.A. Solidification of High-Level Wastes. Part V. A Factorial Study of the Effect of Varying the Concentration of the Components of Purex-Type Waste on the Properties of Phosphate Solids, Appendix. Response Surface Statistical Analysis. USAEC Report BNWL-544, Battelle – Northwest. 1968
[5]Schneider K.J. (Ed.) Waste Solidification Program, Vol. 1 Process Technology: Pot, Spray, and Phosphate Glass Solidification Processes, USAEC Report BNWL-1073, Battelle-Northwest 1969.
[6] Blasewitz A. G. Mendel J E., Schneider K.J., Thompson R.J. Interim Status Report on the Waste Solidification Demonstration Program, USAEC Report BNWL-1083 Battelle-Northwest. 1969
[7] Barton G.B. Effect of Compositional Variation on “Drip temperature” and Leachability of Phosphate Solids Under Consideration for Fixation of Radioactive Residues, USAEC Report CONF-660208 pp.549-565 1966
[7] Allemann, Roberts F.P., Upson U.L. Solidification of High-Level Radioactive Fuel Reprocessing Wastes by Spray and Plot Calcination – Hot – Cell Pilot-Plant Studies, USAEC Report HW-83896, General Electric Company. 1964
[8] Kaser J.D., Moore J.D. The Development of Spray Calciner – Melter, in Proceedings of the Symposium on the Solidification and Long-Term Storage of Highly Radioactive Wastes, Richland, Wsh., Feb. 14 -18: Regan W.H. (Ed.) USAEC Report CONF-660208 pp.326-374 1966
[9] Clark W.E., Fitzgerald C.L. Proposed Means for the Removal of Mercury from Radioactive Waste Solutions, USAEC Report ORNL-TM-827. Oak Ridge National Laboratory 1964.
[10] Clark W.E. et al., Development of Processes for Solidification of High-Level Radioactive Wastes: Summary for Pot Calcination and Rising Level Potglass Processes, USAEC Report ORNL-TM-1584, Oak Ridge National Laboratory 1966
[11] Bond W.R., Development Spray Calciner Runs, In Quarterly Progress Report, Research and Development Activities, Fixation of Radioactive Residues. 1967 w Platt A.M. (Ed.), USAEC Report BNWL-677 Battelle – Nortwest. 1968
[12] Allemann R.T., Roberts F.P., Upson U.L. Solidification of Hight-Level Radioactive Fuel Reprocessing Wastes by Spray and Pot Calcination – Hot-Cell Pilot-plant Studies, USAEC Report HW-83896, General Electric Company. 1964
[13] Rhodes D.W. Storage and Further Treatment of Product from Fluidized-Bed Calcination of Radioactive Wastes, in Proceedings of the Symphosium on Solidification and Long-Term storage of Highly Radiaktve Wastes, Richland, Wash. 14-18. 1966; w Regan W.H. (Ed.), USAEC Report CONF-660208 pp.623-641 1966




Tagi: odpad, lab, laboratorium, biotechnologia, gaz, ługowanie, dewitryfikacja
Drukuj PDF
wstecz Podziel się ze znajomymi

Recenzje



znajdz nas na fcb
Informacje dnia: Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej Inżynieria procesowa w terapiach nowotworowych II konkurs ERA-NET Neuron Cofund NCBR: 5,5 mld na nowatorskie projekty II konkurs w ramach ERA-CVD Cardiovascular Diseases Liczba kobiet w nauce rośnie bardzo wolno Narodowa Agencja Wymiany Akademickiej

Partnerzy

GoldenLine Fundacja Kobiety Nauki Warszawskie Stowarzyszenie Biotechnologiczne (WSB) „Symbioza” Obywatele Nauki NeuroSkoki Biomantis Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA BIOOPEN 2016 QDAY Mlodym Okiem Nanotechnologia Lodz Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Geodezja „Pomiędzy naukami – zjazd fizyków i chemików” WIMC WARSZAWA 2016 Konferencja Biomedyczna Projektor Jagielloński Instytut Lotnictwa EuroLab